HOME
*





Hirzebruch Surface
In mathematics, a Hirzebruch surface is a ruled surface over the projective line. They were studied by . Definition The Hirzebruch surface \Sigma_n is the \mathbb^1-bundle, called a Projective bundle, over \mathbb^1 associated to the sheaf\mathcal\oplus \mathcal(-n).The notation here means: \mathcal(n) is the -th tensor power of the Serre twist sheaf \mathcal(1), the invertible sheaf or line bundle with associated Cartier divisor a single point. The surface \Sigma_0 is isomorphic to , and \Sigma_1 is isomorphic to blown up at a point so is not minimal. GIT quotient One method for constructing the Hirzebruch surface is by using a GIT quotient\Sigma_n = (\Complex^2-\)\times (\Complex^2-\)/(\Complex^*\times\Complex^*)where the action of \Complex^*\times\Complex^* is given by(\lambda, \mu)\cdot(l_0,l_1,t_0,t_1) = (\lambda l_0, \lambda l_1, \mu t_0,\lambda^\mu t_1)This action can be interpreted as the action of \lambda on the first two factors comes from the action of \Complex^* o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ruled Surface
In geometry, a surface is ruled (also called a scroll) if through every point of there is a straight line that lies on . Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line. For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is ''doubly ruled'' if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points . The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry. In algebraic geometry, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, and Nigel Hitchin. Currently, the managing editor of Mathematische Annalen is Thomas Schick. Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947 the journal briefly ceased publication. References External links''Mathematische Annalen''homepage at Springer''Mathematische Annalen''archive (1869†...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard Group
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group :H^1 (X, \mathcal_X^).\, For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group. The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. Examples * The Picard group of the spectrum of a Dedekind domain is its '' ideal class group''. * The invertible sheaves on projective space P''n''(''k'') for ''k'' a field, are the twisting shea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intersection Theory
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. Topological intersection form For a connected oriented manifold of dimension the intersection form is defined on the -th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in . Stated precisely, there is a bilinear form :\lambda_M \colon H^n(M,\partial M) \times H^n(M,\partial M)\to \mathbf given by :\lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zero Section
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Relative Proj
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Proj of a graded ring Proj as a set Let S be a graded ring, whereS = \bigoplus_ S_iis the direct sum decomposition associated with the gradation. The irrelevant ideal of S is the ideal of elements of positive degreeS_+ = \bigoplus_ S_i .We say an ideal is homogeneous if it is generated by homogeneous elements. Then, as a set,\operatorname S = \. For brevity we will sometimes write X for \operatorname S. Proj as a topological space We may define a topology, called the Zariski topology, on \operatorname S by defining the closed sets to be those of the form :V(a) = \, where a is a homogeneous ideal of S. As ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Line
In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a ''point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point (there is no "parallel" case). There are many equivalent ways to formally define a projective line; one of the most common is to define a projective line over a field ''K'', commonly denoted P1(''K''), as the set of one-dimensional subspaces of a two-dimensional ''K''-vector space. This definition is a special instance of the general definition of a projective space. The projective line over the reals is a manifold; see real projective line for details. Homogeneous coordinates An arbitrary point in the projective line P1(''K'') may be represented by an equivalence class of ''homogeneous coordinates'', which take the form of a pair : _1 : x_2/mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GIT Quotient
In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme X = \operatorname A with an action by a group scheme ''G'' is the affine scheme \operatorname(A^G), the prime spectrum of the ring of invariants of ''A'', and is denoted by X /\!/ G. A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of \operatorname, one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has :G / H = G /\!/ H = \operatorname\!\big(k H\big) for an algebraic group ''G'' over a field ''k'' and closed subgroup ''H''. If ''X'' is a complex smooth projective variety and if ''G'' is a reductive co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartier Divisor
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvariet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]