Hilbert Modular Variety
In mathematics, a Hilbert modular surface or Hilbert–Blumenthal surface is an algebraic surface obtained by taking a quotient of a product of two copies of the upper half-plane by a Hilbert modular group. More generally, a Hilbert modular variety is an algebraic variety obtained by taking a quotient of a product of multiple copies of the upper half-plane by a Hilbert modular group. Hilbert modular surfaces were first described by using some unpublished notes written by David Hilbert about 10 years before. Definitions If ''R'' is the ring of integers of a real quadratic field, then the Hilbert modular group SL2(''R'') acts on the product ''H''×''H'' of two copies of the upper half plane ''H''. There are several birationally equivalent surfaces related to this action, any of which may be called Hilbert modular surfaces: *The surface ''X'' is the quotient of ''H''×''H'' by SL2(''R''); it is not compact and usually has quotient singularities coming from points with no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, however, in the Italian school of algebraic geometry, and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one varieties are classified by only the topological genus, but dimension two, the difference between the arithmetic genus p_a and the geometric genus p_g turns to be important because we cannot distinguish birationally only the topological genus. Then we introduce the irregularity for the classification of them. A summary of the results (in det ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K3 Surface
In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface :x^4+y^4+z^4+w^4=0 in complex projective 3-space. Together with two-dimensional compact complex tori, K3 surfaces are the Calabi–Yau manifolds (and also the hyperkähler manifolds) of dimension two. As such, they are at the center of the classification of algebraic surfaces, between the positively curved del Pezzo surfaces (which are easy to classify) and the negatively curved surfaces of general type (which are essentially unclassifiable). K3 surfaces can be considered the simplest algebraic varieti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost (University of Paris-Sud Paris-Sud University (French: ''Université Paris-Sud''), also known as University of Paris — XI (or as Université d'Orsay before 1971), was a French research university distributed among several campuses in the southern suburbs of Paris, in ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, and Nigel Hitchin. Currently, the managing editor of Mathematische Annalen is Thomas Schick. Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947 the journal briefly ceased publication. References External links''Mathematische Annalen''homepage at Springer''Mathematische Annalen''archive (1869†... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Siegel Modular Variety
In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943. Siegel modular varieties are the most basic examples of Shimura varieties. Siegel modular varieties generalize moduli spaces of elliptic curves to higher dimensions and play a central role in the theory of Siegel modular forms, which generalize classical modular forms to higher dimensions. They also have applications to black hole entropy and conformal field theory. Construction The Siegel modular variety ''A''''g'', which parametrize principally polarized abelian varieties of dimension ''g'', can be constructed as the complex analytic spaces constructed as the quotient of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Picard Modular Surface
In mathematics, a Picard modular surface, studied by , is a complex surface constructed as a quotient of the unit ball in C2 by a Picard modular group. Picard modular surfaces are some of the simplest examples of Shimura varieties and are sometimes used as a test case for the general theory of Shimura varieties. See also *Hilbert modular surface *Siegel modular variety In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally pola ... References * *{{Citation , last1=Picard , first1=Émile , authorlink=Émile Picard, title= Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques , url= http://www.numdam.org/item?id=ASENS_1881_2_10__305_0 , year=1881 , journal=Annales Scientifiques de l'École Normale Supérieure , series=Série 2 , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert Modular Form
In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the ''m''-fold product of upper half-planes \mathcal satisfying a certain kind of functional equation. Definition Let ''F'' be a totally real number field of degree ''m'' over the rational field. Let \sigma_1, \ldots, \sigma_m be the real embeddings of ''F''. Through them we have a map :GL_2(F) \to GL_2(\R)^m. Let \mathcal O_F be the ring of integers of ''F''. The group GL_2^+(\mathcal O_F) is called the ''full Hilbert modular group''. For every element z = (z_1, \ldots, z_m) \in \mathcal^m, there is a group action of GL_2^+ (\mathcal O_F) defined by \gamma \cdot z = (\sigma_1(\gamma) z_1, \ldots, \sigma_m(\gamma) z_m) For :g = \begina & b \\ c & d \end \in GL_2(\R), define: :j(g, z) = \det(g)^ (cz+d) A Hilbert modular form of weight (k_1,\ldots,k_m) is an analytic function on \mathcal^m such that for every \gamma \in GL_2^ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Class Group
In number theory, the ideal class group (or class group) of an algebraic number field is the quotient group where is the group of fractional ideals of the ring of integers of , and is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of . The order of the group, which is finite, is called the class number of . The theory extends to Dedekind domains and their field of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic forms, as put into s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galois Conjugate
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element , over a field extension , are the roots of the minimal polynomial of over . Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally itself is included in the set of conjugates of . Equivalently, the conjugates of are the images of under the field automorphisms of that leave fixed the elements of . The equivalence of the two definitions is one of the starting points of Galois theory. The concept generalizes the complex conjugation, since the algebraic conjugates over \R of a complex number are the number itself and its ''complex conjugate''. Example The cube roots of the number one are: : \sqrt = \begin1 \\ pt-\frac+\fraci \\ pt-\frac-\fraci \end The latter two roots are conjugate elements in with minimal polynomial : \left(x+\frac\right)^2+\frac=x^2+x+1. Properties If ''K'' is given inside an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 and 1. If d>0, the corresponding quadratic field is called a real quadratic field, and, if d<0, it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the s. Quadratic fields have been studied in great depth, initially as part of the theory of s. There remain some unsolved prob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clebsch Surface
In mathematics, the Clebsch diagonal cubic surface, or Klein's icosahedral cubic surface, is a non-singular cubic surface, studied by and , all of whose 27 exceptional lines can be defined over the real numbers. The term Klein's icosahedral surface can refer to either this surface or its blowup at the 10 Eckardt points. Definition The Clebsch surface is the set of points (''x''0:''x''1:''x''2:''x''3:''x''4) of P4 satisfying the equations :x_0 + x_1 + x_2 + x_3 + x_4 = 0, :x_0^3 + x_1^3 + x_2^3 + x_3^3 + x_4^3 = 0. Eliminating ''x''0 shows that it is also isomorphic to the surface :x_1^3 + x_2^3 + x_3^3 + x_4^3 = (x_1 + x_2 + x_3 + x_4)^3 in P3. Properties The symmetry group of the Clebsch surface is the symmetric group ''S''5 of order 120, acting by permutations of the coordinates (in ''P''4). Up to isomorphism, the Clebsch surface is the only cubic surface with this automorphism group. The 27 exceptional lines are: * The 15 images (under ''S''5) of the line of points o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |