Hilbert's Thirteenth Problem
Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous) functions of two arguments. It was first presented in the context of nomography, and in particular "nomographic construction" — a process whereby a function of several variables is constructed using functions of two variables. The variant for continuous functions was resolved affirmatively in 1957 by Vladimir Arnold when he proved the Kolmogorov–Arnold representation theorem, but the variant for algebraic functions remains unresolved. Introduction William Rowan Hamilton showed in 1836 that every seventh-degree equation can be reduced via radicals to the form x^7 + ax^3 + bx^2 + cx + 1 = 0. Regarding this equation, Hilbert asked whether its solution, ''x'', considered as a function of the three variables ''a'', ''b'' and ''c'', can be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in and Nature and influence of the problems Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other problems, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Rowan Hamilton
Sir William Rowan Hamilton Doctor of Law, LL.D, Doctor of Civil Law, DCL, Royal Irish Academy, MRIA, Royal Astronomical Society#Fellow, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ireland, living at Dunsink Observatory. Hamilton's scientific career included the study of geometrical optics, ideas from Fourier analysis, and his work on quaternions which made him one of the founders of modern linear algebra. He made major contributions in optics, classical mechanics and abstract algebra. His work was fundamental to modern theoretical physics, particularly his reformulation of Newtonian mechanics, now called Hamiltonian mechanics. It is now central both to electromagnetism and to quantum mechanics. Early life Hamilton was the fourth of nine children born to Sarah Hutton (1780–1817) and Archibald Hamilton (1778–1819),Bruno (2003) who ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomials
In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic variety ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quanta Magazine
''Quanta Magazine'' is an editorially independent online publication of the Simons Foundation covering developments in physics, mathematics, biology and computer science. ''Undark Magazine'' described ''Quanta Magazine'' as "highly regarded for its masterful coverage of complex topics in science and math." The science news aggregator ''RealClearScience'' ranked ''Quanta Magazine'' first on its list of "The Top 10 Websites for Science in 2018." In 2020, the magazine received a National Magazine Award for General Excellence from the American Society of Magazine Editors for its "willingness to tackle some of the toughest and most difficult topics in science and math in a language that is accessible to the lay reader without condescension or oversimplification." The articles in the magazine are freely available to read online. ''Scientific American'', ''Wired'', ''The Atlantic'', and ''The Washington Post'', as well as international science publications like ''Spektrum der Wissensch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Goro Shimura
was a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multiplication of abelian varieties and Shimura varieties, as well as posing the Taniyama–Shimura conjecture which ultimately led to the proof of Fermat's Last Theorem. Biography Gorō Shimura was born in Hamamatsu, Japan, on 23 February 1930. Shimura graduated with a B.A. in mathematics and a D.Sc. in mathematics from the University of Tokyo in 1952 and 1958, respectively. After graduating, Shimura became a lecturer at the University of Tokyo, then worked abroad — including ten months in Paris and a seven-month stint at Princeton's Institute for Advanced Study — before returning to Tokyo, where he married Chikako Ishiguro. He then moved from Tokyo to join the faculty of Osaka University, but growing unhappy with his funding situation, he ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andrey Kolmogorov
Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet mathematician who contributed to the mathematics of probability theory, topology, intuitionistic logic, turbulence, classical mechanics, algorithmic information theory and computational complexity. Biography Early life Andrey Kolmogorov was born in Tambov, about 500 kilometers south-southeast of Moscow, in 1903. His unmarried mother, Maria Y. Kolmogorova, died giving birth to him. Andrey was raised by two of his aunts in Tunoshna (near Yaroslavl) at the estate of his grandfather, a well-to-do nobleman. Little is known about Andrey's father. He was supposedly named Nikolai Matveevich Kataev and had been an agronomist. Kataev had been exiled from St. Petersburg to the Yaroslavl province after his participation in the revolutionary movem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Class (set Theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox (see ). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate class" is often used in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function Composition
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and are composed to yield a function that maps in domain to in codomain . Intuitively, if is a function of , and is a function of , then is a function of . The resulting ''composite'' function is denoted , defined by for all in . The notation is read as " of ", " after ", " circle ", " round ", " about ", " composed with ", " following ", " then ", or " on ", or "the composition of and ". Intuitively, composing functions is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kolmogorov–Arnold Representation Theorem
In real analysis and approximation theory, the Kolmogorov-Arnold representation theorem (or superposition theorem) states that every multivariate continuous function can be represented as a superposition of the two-argument addition and continuous functions of one variable. It solved a more constrained, yet more general form of Hilbert's thirteenth problem. The works of Vladimir Arnold and Andrey Kolmogorov established that if ''f'' is a multivariate continuous function, then ''f'' can be written as a finite composition of continuous functions of a single variable and the binary operation of addition. More specifically, : f(\mathbf x) = f(x_1,\ldots ,x_n) = \sum_^ \Phi_\left(\sum_^ \phi_(x_)\right) . There are proofs with specific constructions. In a sense, they showed that the only true multivariate function is the sum, since every other function can be written using univariate functions and summing.Persi Diaconis and Mehrdad Shahshahani, ''On Linear Functions of Linear Combinat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and edu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vladimir Arnold
Vladimir Igorevich Arnold (alternative spelling Arnol'd, russian: link=no, Влади́мир И́горевич Арно́льд, 12 June 1937 – 3 June 2010) was a Soviet and Russian mathematician. While he is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, he made important contributions in several areas including dynamical systems theory, algebra, catastrophe theory, topology, algebraic geometry, symplectic geometry, differential equations, classical mechanics, hydrodynamics and singularity theory, including posing the ADE classification problem, since his first main result—the solution of Hilbert's thirteenth problem in 1957 at the age of 19. He co-founded two new branches of mathematics— KAM theory, and topological Galois theory (this, with his student Askold Khovanskii). Arnold was also known as a popularizer of mathematics. Through his lectures, seminars, and as the author of several textbooks (such as the famous ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nomograph
A nomogram (from Greek , "law" and , "line"), also called a nomograph, alignment chart, or abac, is a graphical calculating device, a two-dimensional diagram designed to allow the approximate graphical computation of a mathematical function. The field of nomography was invented in 1884 by the French engineer Philbert Maurice d'Ocagne (1862–1938) and used extensively for many years to provide engineers with fast graphical calculations of complicated formulas to a practical precision. Nomograms use a parallel coordinate system invented by d'Ocagne rather than standard Cartesian coordinates. A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of n-1 variables, the value of the unknown variable can be found, or by fixing the values of some variables, the relationship between the unfixed ones can be studied. The result is obtained by laying a straightedge across the known values on the scales and reading the unknown value from where ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |