Hilbert's Eighteenth Problem
Hilbert's eighteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by mathematician David Hilbert. It asks three separate questions about lattices and sphere packing in Euclidean space. Symmetry groups in n dimensions The first part of the problem asks whether there are only finitely many essentially different space groups in n-dimensional Euclidean space. This was answered affirmatively by Bieberbach. Anisohedral tiling in 3 dimensions The second part of the problem asks whether there exists a polyhedron which tiles 3-dimensional Euclidean space but is not the fundamental region of any space group; that is, which tiles but does not admit an isohedral (tile- transitive) tiling. Such tiles are now known as anisohedral. In asking the problem in three dimensions, Hilbert was probably assuming that no such tile exists in two dimensions; this assumption later turned out to be incorrect. The first such tile in three dimensions was found b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in and Nature and influence of the problems Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other problems, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heinrich Heesch
Heinrich Heesch (June 25, 1906 – July 26, 1995) was a German mathematician. He was born in Kiel and died in Hanover. In Göttingen he worked on Group theory. In 1933 Heesch witnessed the National Socialist purges of university staff. Not willing to become a member of the National Socialist organization of university teachers as required, he resigned from his university position in 1935 and worked privately at his parents' home in Kiel until 1948. During this time he did research on tilings. In 1955 Heesch began teaching at Leibniz University Hannover and worked on graph theory. In this period Heesch did pioneering work in developing methods for a computer-aided proof of the then unproved four color theorem. In particular, he was the first to investigate the notion of "discharging", which turned out to be a fundamental ingredient of the eventual computer-aided proof by Kenneth Appel and Wolfgang Haken. Between 1967 and 1971, Heesch made several visits to the United States ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer-aided Proof
A computer-assisted proof is a mathematical proof that has been at least partially generated by computer. Most computer-aided proofs to date have been implementations of large proofs-by-exhaustion of a mathematical theorem. The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these computations implies the given theorem. In 1976, the four color theorem was the first major theorem to be verified using a computer program. Attempts have also been made in the area of artificial intelligence research to create smaller, explicit, new proofs of mathematical theorems from the bottom up using automated reasoning techniques such as heuristic search. Such automated theorem provers have proved a number of new results and found new proofs for known theorems. Additionally, interactive proof assistants allow mathematicians to develop human-readable proofs which are nonetheless formally verified for correctness. Since these proofs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thomas Callister Hales
Thomas Callister Hales (born June 4, 1958) is an American mathematician working in the areas of representation theory, discrete geometry, and formal verification. In representation theory he is known for his work on the Langlands program and the proof of the fundamental lemma over the group Sp(4) (many of his ideas were incorporated into the final proof of the fundamental lemma, due to Ngô Bảo Châu). In discrete geometry, he settled the Kepler conjecture on the density of sphere packings and the honeycomb conjecture. In 2014, he announced the completion of the Flyspeck Project, which formally verified the correctness of his proof of the Kepler conjecture. Biography He received his Ph.D. from Princeton University in 1986, his dissertation was titled ''The Subregular Germ of Orbital Integrals''. Hales taught at Harvard University and the University of Chicago, and from 1993 and 2002 he worked at the University of Michigan. In 1998, Hales submitted his paper on the computer-ai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kepler Conjecture
The Kepler conjecture, named after the 17th-century mathematician and astronomer Johannes Kepler, is a mathematical theorem about sphere packing in three-dimensional Euclidean space. It states that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements. The density of these arrangements is around 74.05%. In 1998, Thomas Hales, following an approach suggested by , announced that he had a proof of the Kepler conjecture. Hales' proof is a proof by exhaustion involving the checking of many individual cases using complex computer calculations. Referees said that they were "99% certain" of the correctness of Hales' proof, and the Kepler conjecture was accepted as a theorem. In 2014, the Flyspeck project team, headed by Hales, announced the completion of a formal proof of the Kepler conjecture using a combination of the Isabelle and HOL Light proof assistants ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sphere Packing
In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space. A typical sphere packing problem is to find an arrangement in which the spheres fill as much of the space as possible. The proportion of space filled by the spheres is called the ''packing density'' of the arrangement. As the local density of a packing in an infinite space can vary depending on the volume over which it is measured, the problem is usually to maximise the average or asymptotic density, measured over a large enough volume. For equal spheres in three dimensions, the densest packing uses ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Einstein Problem
In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles, that is, a shape that can tessellate space, but only in a nonperiodic way. Such a shape is called an "einstein" (not to be confused with the physicist Albert Einstein), a play on the German words ''ein Stein'', meaning ''one tile''. Depending on the particular definitions of nonperiodicity and the specifications of what sets may qualify as tiles and what types of matching rules are permitted, the problem is either open or solved. The einstein problem can be seen as a natural extension of the second part of Hilbert's eighteenth problem, which asks for a single polyhedron that tiles Euclidean 3-space, but such that no tessellation by this polyhedron is isohedral. Such anisohedral tiles were found by Karl Reinhardt in 1928, but these anisohedral tiles all tile space periodically. Proposed solutions In 1988, Peter Schmitt discovered a single ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Karl Reinhardt (mathematician)
Karl August Reinhardt (27 January 1895 – 27 April 1941) was a German mathematician whose research concerned geometry, including polygons and tessellations. He solved one of the parts of Hilbert's eighteenth problem, and is the namesake of the Reinhardt polygons. Life Reinhardt was born on January 27, 1895, in Frankfurt, the descendant of farming stock. One of his childhood friends was mathematician Wilhelm Süss. After studying at the gymnasium there, he became a student at the University of Marburg in 1913 before his studies were interrupted by World War I. During the war, he became a soldier, a high school teacher, and an assistant to mathematician David Hilbert at the University of Göttingen. Reinhardt completed his Ph.D. at Goethe University Frankfurt in 1918. His dissertation, ''Über die Zerlegung der Ebene in Polygone'', concerned tessellations of the plane, and was supervised by Ludwig Bieberbach. He began working as a secondary school teacher while working on his ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and edu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anisohedral Tiling
In geometry, a shape is said to be anisohedral if it admits a tiling, but no such tiling is isohedral (tile-transitive); that is, in any tiling by that shape there are two tiles that are not equivalent under any symmetry of the tiling. A tiling by an anisohedral tile is referred to as an anisohedral tiling. Existence The first part of Hilbert's eighteenth problem asked whether there exists an anisohedral polyhedron in Euclidean 3-space; Grünbaum and Shephard suggestGrünbaum and Shephard, section 9.6 that Hilbert was assuming that no such tile existed in the plane. Reinhardt answered Hilbert's problem in 1928 by finding examples of such polyhedra, and asserted that his proof that no such tiles exist in the plane would appear soon. However, Heesch then gave an example of an anisohedral tile in the plane in 1935. Convex tiles Reinhardt had previously considered the question of anisohedral convex polygons, showing that there were no anisohedral convex hexagons but being unable to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |