Heath's Theorem
   HOME





Heath's Theorem
In relational database theory, a functional dependency is the following constraint between two attribute sets in a relation: Given a relation ''R'' and attribute sets ''X'',''Y'' \subseteq ''R'', ''X'' is said to functionally determine ''Y'' (written ''X'' → ''Y'') if each ''X'' value is associated with precisely one ''Y'' value. ''R'' is then said to satisfy the functional dependency ''X'' → ''Y''. Equivalently, the projection \Pi_R is a function, that is, ''Y'' is a function of ''X''. In simple words, if the values for the ''X'' attributes are known (say they are ''x''), then the values for the ''Y'' attributes corresponding to ''x'' can be determined by looking them up in ''any'' tuple of ''R'' containing ''x''. Customarily ''X'' is called the ''determinant'' set and ''Y'' the ''dependent'' set. A functional dependency FD: ''X'' → ''Y'' is called ''trivial'' if ''Y'' is a subset of ''X''. In other words, a dependency FD: ''X'' → ''Y'' means that the values of ''Y'' are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Relational Database
A relational database (RDB) is a database based on the relational model of data, as proposed by E. F. Codd in 1970. A Relational Database Management System (RDBMS) is a type of database management system that stores data in a structured format using rows and columns. Many relational database systems are equipped with the option of using SQL (Structured Query Language) for querying and updating the database. History The concept of relational database was defined by E. F. Codd at IBM in 1970. Codd introduced the term ''relational'' in his research paper "A Relational Model of Data for Large Shared Data Banks". In this paper and later papers, he defined what he meant by ''relation''. One well-known definition of what constitutes a relational database system is composed of Codd's 12 rules. However, no commercial implementations of the relational model conform to all of Codd's rules, so the term has gradually come to describe a broader class of database systems, which at a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Soundness
In logic and deductive reasoning, an argument is sound if it is both Validity (logic), valid in form and has no false premises. Soundness has a related meaning in mathematical logic, wherein a Formal system, formal system of logic is sound if and only if every well-formed formula that can be proven in the system is logically valid with respect to the Semantics of logic, logical semantics of the system. Definition In deductive reasoning, a sound argument is an argument that is Validity (logic), valid and all of its premises are true (and as a consequence its conclusion is true as well). An argument is valid if, assuming its premises are true, the conclusion ''must be'' true. An example of a sound argument is the following well-known syllogism: : ''(premises)'' : All men are mortal. : Socrates is a man. : ''(conclusion)'' : Therefore, Socrates is mortal. Because of the logical necessity of the conclusion, this argument is valid; and because the argument is valid and its premises ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Cover
A canonical cover F_c for F (a set of functional dependencies on a relation scheme) is a set of dependencies such that F logically implies all dependencies in F_c, and F_c logically implies all dependencies in F. The set F_c has two important properties: # No functional dependency in F_c contains an extraneous attribute. # Each left side of a functional dependency in F_c is unique. That is, there are no two dependencies a \to b and c \to d in F_c such that a = c. A canonical cover is not unique for a given set of functional dependencies, therefore one set F can have multiple covers F_c. Algorithm for computing a canonical cover # F_c = F # Repeat: ## Use the union rule to replace any dependencies in F_c of the form a \to b and a \to d with a \to bd. ## Find a functional dependency in F_c with an extraneous attribute and delete it from F_c # ... until F_c does not change Canonical cover example In the following example, Fc is the canonical cover of F. Given the following ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schema (logic)
In logic, the logical form of a statement is a precisely specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language. The logical form of an argument is called the argument form of the argument. History The importance of the concept of form to logic was already recognized in ancient times. Aristotle, in the '' Prior Analytics'', was one of the first people to employ variable letters to represent valid inferences. Therefore, Jan Łukasiewicz claims that the introduction of variables was "one of Aristotle's greatest inventions." ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completeness (logic)
In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete. The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true. Other properties related to completeness The property converse to completeness is called soundness: a system is sound with respect to a property (mostly semantical validity) if each of its theorems has that property. Forms of completeness Expressive completeness A formal language is ''expressively complete'' if it can express the subject matter for which it is intended. Functional completeness A set of logical connectives associated with a formal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Soundness
In logic and deductive reasoning, an argument is sound if it is both Validity (logic), valid in form and has no false premises. Soundness has a related meaning in mathematical logic, wherein a Formal system, formal system of logic is sound if and only if every well-formed formula that can be proven in the system is logically valid with respect to the Semantics of logic, logical semantics of the system. Definition In deductive reasoning, a sound argument is an argument that is Validity (logic), valid and all of its premises are true (and as a consequence its conclusion is true as well). An argument is valid if, assuming its premises are true, the conclusion ''must be'' true. An example of a sound argument is the following well-known syllogism: : ''(premises)'' : All men are mortal. : Socrates is a man. : ''(conclusion)'' : Therefore, Socrates is mortal. Because of the logical necessity of the conclusion, this argument is valid; and because the argument is valid and its premises ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inference Rules
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the logical structure of valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. '' Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as '' modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argument forms involving l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. In modern logic, an axiom is a premise or starting point for reasoning. In mathematics, an ''axiom'' may be a " logical axiom" or a " non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for example ''a'' + 0 = ''a'' in integer arithmetic. N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Superkey
In the relational data model a superkey is any set of attributes that uniquely identifies each tuple of a relation. Because superkey values are unique, tuples with the same superkey value must also have the same non-key attribute values. That is, non-key attributes are functionally dependent on the superkey. The set of all attributes is always a superkey (the trivial superkey). Tuples in a relation are by definition unique, with duplicates removed after each operation, so the set of all attributes is always uniquely valued for every tuple. A candidate key (or minimal superkey) is a superkey that can't be reduced to a simpler superkey by removing an attribute. For example, in an employee schema with attributes employeeID, name, job, and departmentID, if employeeID values are unique then employeeID combined with any or all of the other attributes can uniquely identify tuples in the table. Each combination, , , , and so on is a superkey. is a candidate key, since no subset of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example, less than and equality (mathematics), equality among real numbers are both transitive: If and then ; and if and then . Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie. On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vehicle Identification Number
A vehicle identification number (VIN; also called a chassis number or frame number) is a unique code, including a serial number, used by the automotive industry to identify individual motor vehicles, towed vehicles, motorcycles, scooters and mopeds, as defined by the International Organization for Standardization in ISO 3779 (content and structure) and ISO 4030 (location and attachment). There are vehicle history services in several countries that help potential car owners use VINs to find vehicles that are defective or have been written off. History VINs were first used in 1954 in the United States. From 1954 to 1965, there was no accepted standard for these numbers, so different manufacturers and even divisions within a manufacturer used different formats. Many were little more than a serial number. Starting in January 1966 the US Government mandated that a 13-character VIN be used. This specification was phased in over several years. US manufacturers used them starti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]