Hattori–Stong Theorem
In algebraic topology, the Hattori–Stong theorem, proved by and , gives an isomorphism between the stable homotopy of a Thom spectrum and the primitive elements of its K-homology In mathematics, K-homology is a homology theory on the category of locally compact Hausdorff spaces. It classifies the elliptic pseudo-differential operators acting on the vector bundles over a space. In terms of C^*-algebras, it classifies the F .... References * * Theorems in algebraic topology {{topology-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stable Homotopy
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space X, the homotopy groups \pi_(\Sigma^n X) stabilize for n sufficiently large. In particular, the homotopy groups of spheres \pi_(S^n) stabilize for n\ge k + 2. For example, :\langle \text_\rangle = \Z = \pi_1(S^1)\cong \pi_2(S^2)\cong \pi_3(S^3)\cong\cdots :\langle \eta \rangle = \Z = \pi_3(S^2)\to \pi_4(S^3)\cong \pi_5(S^4)\cong\cdots In the two examples above all the maps between homotopy groups are applications of the suspension functor. The first example is a standard corollary of the Hurewicz theorem, that \pi_n(S^n)\cong \Z. In the second example the Hopf map, \eta, is mapped to its suspension \Sigma\eta, which generates \pi_4(S^3)\cong \Z/2. One of the most ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thom Spectrum
In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space. Construction of the Thom space One way to construct this space is as follows. Let :p\colon E \to B be a rank ''n'' real vector bundle over the paracompact space ''B''. Then for each point ''b'' in ''B'', the fiber E_b is an ''n''-dimensional real vector space. We can form an ''n''-sphere bundle \operatorname(E) \to B by taking the one-point compactification of each fiber and gluing them together to get the total space. Finally, from the total space \operatorname(E) we obtain the Thom space T(E) as the quotient of \operatorname(E) by ''B''; that is, by identifying all the new points to a single point \infty, which we take as the basepoint of T(E). If ''B'' is compact, then T(E) is the one-point compactification of ''E''. For exam ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-homology
In mathematics, K-homology is a homology theory on the category of locally compact Hausdorff spaces. It classifies the elliptic pseudo-differential operators acting on the vector bundles over a space. In terms of C^*-algebras, it classifies the Fredholm modules over an algebra. An operator homotopy between two Fredholm modules (\mathcal,F_0,\Gamma) and (\mathcal,F_1,\Gamma) is a norm continuous path of Fredholm modules, t \mapsto (\mathcal,F_t,\Gamma), t \in ,1 Two Fredholm modules are then equivalent if they are related by unitary transformations or operator homotopies. The K^0(A) group is the abelian group of equivalence classes of even Fredholm modules over A. The K^1(A) group is the abelian group of equivalence classes of odd Fredholm modules over A. Addition is given by direct summation of Fredholm modules, and the inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topology (journal)
''Topology'' was a peer-reviewed mathematical journal covering topology and geometry. It was established in 1962 and was published by Elsevier. The last issue of ''Topology'' appeared in 2009. Pricing dispute On 10 August 2006, after months of unsuccessful negotiations with Elsevier about the price policy of library subscriptions, the entire editorial board of the journal handed in their resignation, effective 31 December 2006. Subsequently, two more issues appeared in 2007 with papers that had been accepted before the resignation of the editors. In early January the former editors instructed Elsevier to remove their names from the website of the journal, but Elsevier refused to comply, justifying their decision by saying that the editorial board should remain on the journal until all of the papers accepted during its tenure had been published. In 2007 the former editors of ''Topology'' announced the launch of the '' Journal of Topology'', published by Oxford University Press o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |