Hasse–Schmidt Derivation
   HOME
*





Hasse–Schmidt Derivation
In mathematics, a Hasse–Schmidt derivation is an extension of the notion of a derivation. The concept was introduced by . Definition For a (not necessarily commutative nor associative) ring ''B'' and a ''B''-algebra ''A'', a Hasse–Schmidt derivation is a map of ''B''-algebras :D: A \to A ![t!/math> taking values in the ring of formal power series">">![t<_a>!.html" ;"title=".html" ;"title="![t">![t!">.html" ;"title="![t">![t!/math> taking values in the ring of formal power series with coefficients in ''A''. This definition is found in several places, such as , which also contains the following example: for ''A'' being the ring of infinitely differentiable functions (defined on, say, R''n'') and ''B''=R, the map :f \mapsto \exp\left(t \frac d \right) f(x) = f + t \frac + \frac 2 \frac + \cdots is a Hasse–Schmidt derivation, as follows from applying the Leibniz rule iteratedly. Equivalent characterizations shows that a Hasse–Schmidt derivation is equiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derivation (differential Algebra)
In mathematics, a derivation is a function on an algebra over a field, algebra which generalizes certain features of the derivative operator. Specifically, given an algebra ''A'' over a ring (mathematics), ring or a field (mathematics), field ''K'', a ''K''-derivation is a ''K''-linear map that satisfies Product rule, Leibniz's law: : D(ab) = a D(b) + D(a) b. More generally, if ''M'' is an ''A''-bimodule, a ''K''-linear map that satisfies the Leibniz law is also called a derivation. The collection of all ''K''-derivations of ''A'' to itself is denoted by Der''K''(''A''). The collection of ''K''-derivations of ''A'' into an ''A''-module ''M'' is denoted by . Derivations occur in many different contexts in diverse areas of mathematics. The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R''n''. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Ring
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity inste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Power Series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.). A formal power series is a special kind of formal series, whose terms are of the form a x^n where x^n is the nth power of a variable x (n is a non-negative integer), and a is called the coefficient. Hence, power series can be viewed as a generalization of polynomials, where the number of terms is allowed to be infinite, with no requirements of convergence. Thus, the series may no longer represent a function of its variable, merely a formal sequence of coefficients, in contrast to a power series, which defines a function by taking numerical values for the variable within a radius of convergence. In a formal power series, the x^n are used only as position-holders for the coefficients, so that the coefficient of x^5 is the fifth ter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differentiable Function
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If is an interior point in the domain of a function , then is said to be ''differentiable at'' if the derivative f'(x_0) exists. In other words, the graph of has a non-vertical tangent line at the point . is said to be differentiable on if it is differentiable at every point of . is said to be ''continuously differentiable'' if its derivative is also a continuous function over the domain of the function f. Generally speaking, is said to be of class if its first k derivatives f^(x), f^(x), \ldots, f^(x) exist and are continuous over the domain of the func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Product Rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + u \cdot v' or in Leibniz's notation as \frac (u\cdot v) = \frac \cdot v + u \cdot \frac. The rule may be extended or generalized to products of three or more functions, to a rule for higher-order derivatives of a product, and to other contexts. Discovery Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials. (However, J. M. Child, a translator of Leibniz's papers, argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let ''u''(''x'') and ''v''(''x'') be two differentiable functions of ''x''. Then the differential of ''uv'' is : \begin d(u\cdot v) & = (u + du)\cdot (v + dv) - u\cdot v \\ & = u\cdot dv + v\cdot du + du\cdot dv. \end Since the term ''du''·''dv'' is "negligi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bialgebra
In mathematics, a bialgebra over a field ''K'' is a vector space over ''K'' which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms. (These statements are equivalent since they are expressed by the same commutative diagrams.) Similar bialgebras are related by bialgebra homomorphisms. A bialgebra homomorphism is a linear map that is both an algebra and a coalgebra homomorphism. As reflected in the symmetry of the commutative diagrams, the definition of bialgebra is self-dual, so if one can define a dual of ''B'' (which is always possible if ''B'' is finite-dimensional), then it is automatically a bialgebra. Formal definition (''B'', ∇, η, Δ, ε) is a bialgebra over ''K'' if it h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noncommutative Symmetric Function
In mathematics, the noncommutative symmetric functions form a Hopf algebra NSymm analogous to the Hopf algebra of symmetric functions. The Hopf algebra NSymm was introduced by Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir Retakh, and Jean-Yves Thibon. It is noncommutative but cocommutative graded Hopf algebra. It has the Hopf algebra of symmetric functions as a quotient, and is a subalgebra of the Hopf algebra of permutations, and is the graded dual of the Hopf algebra of quasisymmetric function. Over the rational numbers it is isomorphic as a Hopf algebra to the universal enveloping algebra of the free Lie algebra on countably many variables. Definition The underlying algebra of the Hopf algebra of noncommutative symmetric functions is the free ring Z⟨''Z''1, ''Z''2,...⟩ generated by non-commuting variables ''Z''1, ''Z''2, ... The coproduct takes ''Z''''n'' to Σ ''Z''''i'' ⊗ ''Z''''n''–''i'', where ''Z'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exterior Algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors u and  v, denoted by u \wedge v, is called a bivector and lives in a space called the ''exterior square'', a vector space that is distinct from the original space of vectors. The magnitude of u \wedge v can be interpreted as the area of the parallelogram with sides u and  v, which in three dimensions can also be computed using the cross product of the two vectors. More generally, all parallel plane surfaces with the same orientation and area have the same bivector as a measure of their oriented area. Like the cross product, the exterior product is anticommutative, meaning t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cayley–Hamilton Theorem
In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies its own characteristic equation. If is a given matrix and is the identity matrix, then the characteristic polynomial of is defined as p_A(\lambda)=\det(\lambda I_n-A), where is the determinant operation and is a variable for a scalar element of the base ring. Since the entries of the matrix (\lambda I_n-A) are (linear or constant) polynomials in , the determinant is also a degree- monic polynomial in , p_A(\lambda) = \lambda^n + c_\lambda^ + \cdots + c_1\lambda + c_0~. One can create an analogous polynomial p_A(A) in the matrix instead of the scalar variable , defined as p_A(A) = A^n + c_A^ + \cdots + c_1A + c_0I_n~. The Cayley–Hamilton theorem states that this polynomial expression is equal to the zero matrix, which is to say tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]