Harnack's Principle
   HOME
*





Harnack's Principle
In the mathematical field of partial differential equations, Harnack's principle or Harnack's theorem is a corollary of Harnack's inequality which deals with the convergence of sequences of harmonic functions. Given a sequence of harmonic functions on an open connected subset of the Euclidean space , which are pointwise monotonically nondecreasing in the sense that :u_1(x) \le u_2(x) \le \dots for every point of , then the limit : \lim_u_n(x) automatically exists in the extended real number line for every . Harnack's theorem says that the limit either is infinite at every point of or it is finite at every point of . In the latter case, the convergence is uniform on compact sets and the limit is a harmonic function on . The theorem is a corollary of Harnack's inequality. If is a Cauchy sequence for any particular value of , then the Harnack inequality applied to the harmonic function implies, for an arbitrary compact set containing , that is arbitrarily small for sufficient ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy Sequence
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose Element (mathematics), elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite number of elements of the sequence are less than that given distance from each other. It is not sufficient for each term to become arbitrarily close to the term. For instance, in the sequence of square roots of natural numbers: a_n=\sqrt n, the consecutive terms become arbitrarily close to each other: a_-a_n = \sqrt-\sqrt = \frac d. (Actually, any m > \left(\sqrt + d\right)^2 suffices.) As a result, despite how far one goes, the remaining terms of the sequence never get c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harmonic Functions
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f: U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that is, : \frac + \frac + \cdots + \frac = 0 everywhere on . This is usually written as : \nabla^2 f = 0 or :\Delta f = 0 Etymology of the term "harmonic" The descriptor "harmonic" in the name harmonic function originates from a point on a taut string which is undergoing harmonic motion. The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as ''harmonics''. Fourier analysis involves expanding functions on the unit circle in terms of a series of these harmonics. Considering higher dimensional analogues of the harmonics on the unit ''n''-sphere, one arrives at the spherical harmonics. These functions satisfy Laplace's equation and over time "harmonic" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Wiley & Sons
John Wiley & Sons, Inc., commonly known as Wiley (), is an American multinational publishing company founded in 1807 that focuses on academic publishing and instructional materials. The company produces books, journals, and encyclopedias, in print and electronically, as well as online products and services, training materials, and educational materials for undergraduate, graduate, and continuing education students. History The company was established in 1807 when Charles Wiley opened a print shop in Manhattan. The company was the publisher of 19th century American literary figures like James Fenimore Cooper, Washington Irving, Herman Melville, and Edgar Allan Poe, as well as of legal, religious, and other non-fiction titles. The firm took its current name in 1865. Wiley later shifted its focus to scientific, technical, and engineering subject areas, abandoning its literary interests. Wiley's son John (born in Flatbush, New York, October 4, 1808; died in East Orange, New Je ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schauder Estimates
In mathematics, the Schauder estimates are a collection of results due to concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates. There is both an ''interior'' result, giving a Hölder condition for the solution in interior domains away from the boundary, and a ''boundary'' result, giving the Hölder condition for the solution in the entire domain. The former bound depends only on the spatial dimension, the equation, and the distance to the boundary; the latter depends on the smoothness of the boundary as well. The Schauder estimates are a necessary precondition to using the method of continuity to pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harnack Inequality
In mathematics, Harnack's inequality is an inequality relating the values of a positive harmonic function at two points, introduced by . Harnack's inequality is used to prove Harnack's theorem about the convergence of sequences of harmonic functions. , and generalized Harnack's inequality to solutions of elliptic or parabolic partial differential equations. Such results can be used to show the interior regularity of weak solutions. Perelman's solution of the Poincaré conjecture uses a version of the Harnack inequality, found by , for the Ricci flow. The statement Harnack's inequality applies to a non-negative function ''f'' defined on a closed ball in R''n'' with radius ''R'' and centre ''x''0. It states that, if ''f'' is continuous on the closed ball and harmonic on its interior, then for every point ''x'' with , ''x'' − ''x''0,  = ''r''  0 (depending only on ''K'', \tau, t-\tau, and the coefficients of \mathcal) such that, for each t\in(\tau, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Partial Differential Equation
Second-order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic. Any second-order linear PDE in two variables can be written in the form :Au_ + 2Bu_ + Cu_ + Du_x + Eu_y + Fu +G= 0,\, where , , , , , , and are functions of and and where u_x=\frac, u_=\frac and similarly for u_,u_y,u_. A PDE written in this form is elliptic if :B^2-AC, applying the chain rule once gives :u_=u_\xi \xi_x+u_\eta \eta_x and u_=u_\xi \xi_y+u_\eta \eta_y, a second application gives :u_=u_ _x+u_ _x+2u_\xi_x\eta_x+u_\xi_+u_\eta_, :u_=u_ _y+u_ _y+2u_\xi_y\eta_y+u_\xi_+u_\eta_, and :u_=u_ \xi_x\xi_y+u_ \eta_x\eta_y+u_(\xi_x\eta_y+\xi_y\eta_x)+u_\xi_+u_\eta_. We can replace our PDE in x and y with an equivalent equation in \xi and \eta :au_ + 2bu_ + cu_ \text= 0,\, where :a=A^2+2B\xi_x\xi_y+C^2, :b=2A\xi_x\eta_x+2B(\xi_x\eta_y+\xi_y\eta_x) +2C\xi_y\eta_y , and :c=A^2+2B\eta_x\eta_y+C^2. To transform our PDE into the desired canonical fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Convergence
In mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Definition Let (X, \mathcal) be a topological space and (Y,d_) be a metric space. A sequence of functions :f_ : X \to Y, n \in \mathbb, is said to converge compactly as n \to \infty to some function f : X \to Y if, for every compact set K \subseteq X, :f_, _ \to f, _ uniformly on K as n \to \infty. This means that for all compact K \subseteq X, :\lim_ \sup_ d_ \left( f_ (x), f(x) \right) = 0. Examples * If X = (0, 1) \subseteq \mathbb and Y = \mathbb with their usual topologies, with f_ (x) := x^, then f_ converges compactly to the constant function with value 0, but not uniformly. * If X=(0,1], Y=\R and f_n(x)=x^n, then f_n converges pointwise convergence, pointwise to the function that is zero on (0,1) and one at 1, but the sequence does not converge compactly. * A very po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harnack's Inequality
In mathematics, Harnack's inequality is an inequality relating the values of a positive harmonic function at two points, introduced by . Harnack's inequality is used to prove Harnack's theorem about the convergence of sequences of harmonic functions. , and generalized Harnack's inequality to solutions of elliptic or parabolic partial differential equations. Such results can be used to show the interior regularity of weak solutions. Perelman's solution of the Poincaré conjecture uses a version of the Harnack inequality, found by , for the Ricci flow. The statement Harnack's inequality applies to a non-negative function ''f'' defined on a closed ball in R''n'' with radius ''R'' and centre ''x''0. It states that, if ''f'' is continuous on the closed ball and harmonic on its interior, then for every point ''x'' with , ''x'' − ''x''0,  = ''r''  0 (depending only on ''K'', \tau, t-\tau, and the coefficients of \mathcal) such that, for each t\in(\tau, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extended Real Number Line
In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The affinely extended real number system is denoted \overline or \infty, +\infty/math> or It is the Dedekind–MacNeille completion of the real numbers. When the meaning is clear from context, the symbol +\infty is often written simply as Motivation Limits It is often useful to describe the behavior of a function f, as either the argument x or the function value f gets "infinitely large" in some sense. For example, consider the function f defined by :f(x) = \frac. The graph of this function has a horizontal asymptote at y = 0. Geometrically, when moving increasingly farther to the right along t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Of A Sequence
As the positive integer n becomes larger and larger, the value n\cdot \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n\cdot \sin\left(\tfrac1\right) equals 1." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the \lim symbol (e.g., \lim_a_n).Courant (1961), p. 29. If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers. History The Greek philosopher Zeno of Elea is famous for formulating paradoxes that involve limiting processes. Leucippus, Democritus, Antiphon, Eudoxus, and Archimedes developed the method of exhaustion, which uses an infinite sequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]