Harary's Generalized Tic-tac-toe
Harary's generalized tic-tac-toe or animal tic-tac-toe is a generalization of the game tic-tac-toe, defining the game as a race to complete a particular polyomino on a square grid of varying size, rather than being limited to "in a row" constructions. It was devised by Frank Harary in March 1977, and is a broader definition than that of an m,n,k-game. Harary's generalization does not include tic-tac-toe itself, as diagonal constructions are not considered a win. Like many other two-player games, strategy stealing means that the second player can never win. All that is left to study is to determine whether the first player can win, on what board sizes he may do so, and in how many moves it will take. Results Square boards Let ''b'' be the smallest size square board on which the first player can win, and let ''m'' be the smallest number of moves in which the first player can force a win, assuming perfect play by both sides. *monomino: ''b'' = 1, ''m'' = 1 *domino: ''b'' = 2, ''m' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tic-tac-toe
Tic-tac-toe (American English), noughts and crosses (Commonwealth English), or Xs and Os (Canadian or Irish English) is a paper-and-pencil game for two players who take turns marking the spaces in a three-by-three grid with ''X'' or ''O''. The player who succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner. It is a solved game, with a forced draw assuming best play from both players. Gameplay Tic-tac-toe is played on a three-by-three grid by two players, who alternately place the marks X and O in one of the nine spaces in the grid. In the following example, the first player (''X'') wins the game in seven steps: There is no universally-agreed rule as to who plays first, but in this article the convention that X plays first is used. Players soon discover that the best play from both parties leads to a draw. Hence, tic-tac-toe is often played by young children who may not have discovered the optimal strategy. Because of the s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the study ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frank Harary
Frank Harary (March 11, 1921 – January 4, 2005) was an American mathematician, who specialized in graph theory. He was widely recognized as one of the "fathers" of modern graph theory. Harary was a master of clear exposition and, together with his many doctoral students, he standardized the terminology of graphs. He broadened the reach of this field to include physics, psychology, sociology, and even anthropology. Gifted with a keen sense of humor, Harary challenged and entertained audiences at all levels of mathematical sophistication. A particular trick he employed was to turn theorems into games—for instance, students would try to add red edges to a graph on six vertices in order to create a red triangle, while another group of students tried to add edges to create a blue triangle (and each edge of the graph had to be either blue or red). Because of the theorem on friends and strangers, one team or the other would have to win. Biography Frank Harary was born in New Yo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
M,n,k-game
An ''m'',''n'',''k''-game is an abstract board game in which two players take turns in placing a stone of their color on an ''m''-by-''n'' board, the winner being the player who first gets ''k'' stones of their own color in a row, horizontally, vertically, or diagonally.J. W. H. M. Uiterwijk and H. J van der Herik, ''The advantage of the initiative'', Information Sciences 122 (1) (2000) 43-58.Jaap van den Herik, Jos W.H.M. Uiterwijk, Jack van Rijswijck (2002). "Games solved: Now and in the future". Artificial Intelligence. Thus, tic-tac-toe is the 3,3,3-game and free-style gomoku is the 15,15,5-game. An ''m'',''n'',''k''-game is also called a ''k''-in-a-row game on an ''m''-by-''n'' board. The ''m'',''n'',''k''-games are mainly of mathematical interest. One seeks to find the game-theoretic value, the result of the game with perfect play. This is known as solving the game. Strategy stealing argument A standard strategy stealing argument from combinatorial game theory shows t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strategy Stealing
In combinatorial game theory, the strategy-stealing argument is a general argument that shows, for many two-player games, that the second player cannot have a guaranteed winning strategy. The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage. A key property of a strategy stealing argument is that it proves that the first player can win (or possibly draw) the game without actually constructing such a strategy. So, although it might tell you that there exists a winning strategy, the proof gives you no information about what that strategy is. The argument works by obtaining a contradiction. A winning strategy is assumed to exist for the second player, who is using it. But then, roughly speaking, after making an arbitrary first move – which by the conditions above is not a disa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the study ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Domino
Dominoes is a family of tile-based games played with gaming pieces, commonly known as dominoes. Each domino is a rectangular tile, usually with a line dividing its face into two square ''ends''. Each end is marked with a number of spots (also called '' pips'' or ''dots'') or is blank. The backs of the tiles in a set are indistinguishable, either blank or having some common design. The gaming pieces make up a domino set, sometimes called a ''deck'' or ''pack''. The traditional European domino set consists of 28 tiles, also known as pieces, bones, rocks, stones, men, cards or just dominoes, featuring all combinations of spot counts between zero and six. A domino set is a generic gaming device, similar to playing cards or dice, in that a variety of games can be played with a set. Another form of entertainment using domino pieces is the practice of domino toppling. The earliest mention of dominoes is from Song dynasty China found in the text ''Former Events in Wulin'' by Zhou Mi (1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tromino
A tromino or triomino is a polyomino of order 3, that is, a polygon in the plane made of three equal-sized squares connected edge-to-edge. Symmetry and enumeration When rotations and reflections are not considered to be distinct shapes, there are only two different ''free'' trominoes: "I" and "L" (the "L" shape is also called "V"). Since both free trominoes have reflection symmetry, they are also the only two ''one-sided'' trominoes (trominoes with reflections considered distinct). When rotations are also considered distinct, there are six ''fixed'' trominoes: two I and four L shapes. They can be obtained by rotating the above forms by 90°, 180° and 270°. Rep-tiling and Golomb's tromino theorem Both types of tromino can be dissected into ''n''2 smaller trominos of the same type, for any integer ''n'' > 1. That is, they are rep-tiles. Continuing this dissection recursively leads to a tiling of the plane, which in many cases is an aperiodic tiling. In this context, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tetromino
A tetromino is a geometric shape composed of four squares, connected orthogonally (i.e. at the edges and not the corners). Tetrominoes, like dominoes and pentominoes, are a particular type of polyomino. The corresponding polycube, called a tetracube, is a geometric shape composed of four cubes connected orthogonally. A popular use of tetrominoes is in the video game ''Tetris'' created by the Soviet game designer Alexey Pajitnov, which refers to them as tetriminos. The tetrominoes used in the game are specifically the one-sided tetrominoes. The tetrominoes Free tetrominoes Polyominos are formed by joining unit squares along their edges. A free polyomino is a polyomino considered up to congruence. That is, two free polyominos are the same if there is a combination of translations, rotations, and reflections that turns one into the other. A free tetromino is a free polyomino made from four squares. There are five free tetrominoes. The free tetrominoes have the following symmetry: * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Martin Gardner
Martin Gardner (October 21, 1914May 22, 2010) was an American popular mathematics and popular science writer with interests also encompassing scientific skepticism, micromagic, philosophy, religion, and literatureespecially the writings of Lewis Carroll, L. Frank Baum, and G. K. Chesterton.Martin (2010) He was also a leading authority on Lewis Carroll. ''The Annotated Alice'', which incorporated the text of Carroll's two Alice books, was his most successful work and sold over a million copies. He had a lifelong interest in magic and illusion and in 1999, MAGIC magazine named him as one of the "100 Most Influential Magicians of the Twentieth Century". He was considered the doyen of American puzzlers. He was a prolific and versatile author, publishing more than 100 books. Gardner was best known for creating and sustaining interest in recreational mathematicsand by extension, mathematics in generalthroughout the latter half of the 20th century, principally through his "Mathema ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recreational Mathematics
Recreational mathematics is mathematics carried out for recreation (entertainment) rather than as a strictly research and application-based professional activity or as a part of a student's formal education. Although it is not necessarily limited to being an endeavor for amateurs, many topics in this field require no knowledge of advanced mathematics. Recreational mathematics involves mathematical puzzles and games, often appealing to children and untrained adults, inspiring their further study of the subject. The Mathematical Association of America (MAA) includes recreational mathematics as one of its seventeen Special Interest Groups, commenting: Mathematical competitions (such as those sponsored by mathematical associations) are also categorized under recreational mathematics. Topics Some of the more well-known topics in recreational mathematics are Rubik's Cubes, magic squares, fractals, logic puzzles and mathematical chess problems, but this area of mathematics incl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |