HOME
*





Gy's Sampling Theory
Gy's sampling theory is a theory about the sampling of materials, developed by Pierre Gy from the 1950s to beginning 2000sGy, P (2004), Chemometrics and Intelligent Laboratory Systems, 74, 61-70. in articles and books including: *(1960) Sampling nomogram *(1979) Sampling of particulate materials; theory and practice *(1982) Sampling of particulate materials; theory and practice; 2nd edition *(1992) Sampling of Heterogeneous and Dynamic Material Systems: Theories of Heterogeneity, Sampling and Homogenizing *(1998) Sampling for Analytical Purposes The abbreviation "TOS" is also used to denote Gy's sampling theory.K.H. Esbensen. 50 years of Pierre Gy's “Theory of Sampling”—WCSB1: a tribute. Chemometrics and Intelligent Laboratory Systems. Volume 74, Issue 1, 28 November 2004, pages 3–6. Gy's sampling theory uses a model in which the sample taking is represented by independent Bernoulli trials for every particle in the parent population from which the sample is drawn. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scientific Theory
A scientific theory is an explanation of an aspect of the natural world and universe that has been repeatedly tested and corroborated in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge. A scientific theory differs from a scientific fact or scientific law in that a theory explains "why" or "how": a fact is a simple, basic observation, whereas a law is a statement (often a mathematical equation) about a relationship between facts. For example, Newton’s Law of Gravity is a mathematical equation that can be used to predict the attraction between bodies, but it is not a theory to explain ''how'' gravity works. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pierre Gy
Pierre Maurice Gy (; 25 July 1924 – 5 November 2015) was a chemist and statistician. Born in Paris, France, to Felix and Clemence, Gy graduated in chemical engineering from ESPCI ParisTech in 1946. On graduation, Gy worked as a chemical engineer for the Compagnie Minière du Congo Français, Congo, before returning to Paris in 1949 as a research engineer for the mining and processing trade organisation Minerais et Metaux. It was during this time that Gy started to address fundamental issues in sampling, especially those concerned with characterising industrial bulk chemicals, aggregates and chemical processes. Gy became head of the mineral processing laboratories and, by 1962, technical manager, during which time he continued to develop his sampling theory. Since 1963 he has worked as an industrial sampling consultant. Gy received doctorates in physics (1960) and mathematics (1975) from the University of Nancy A university () is an institution of higher (or tertiary) e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heterogeneous
Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous is distinctly nonuniform in at least one of these qualities. Heterogeneous Mixtures, in chemistry, is where certain elements are unwillingly combined and, when given the option, will separate. Etymology and spelling The words ''homogeneous'' and ''heterogeneous'' come from Medieval Latin ''homogeneus'' and ''heterogeneus'', from Ancient Greek ὁμογενής (''homogenēs'') and ἑτερογενής (''heterogenēs''), from ὁμός (''homos'', “same”) and ἕτερος (''heteros'', “other, another, different”) respectively, followed by γένος (''genos'', “kind”); - ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scientific Model
Scientific modelling is a scientific activity, the aim of which is to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate by referencing it to existing and usually commonly accepted knowledge. It requires selecting and identifying relevant aspects of a situation in the real world and then developing a model to replicate a system with those features. Different types of models may be used for different purposes, such as conceptual models to better understand, operational models to operationalize, mathematical models to quantify, computational models to simulate, and graphical models to visualize the subject. Modelling is an essential and inseparable part of many scientific disciplines, each of which has its own ideas about specific types of modelling. The following was said by John von Neumann. There is also an increasing attention to scientific modelling in fields such as science education, philosophy of science, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Independence
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Trials
In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his '' Ars Conjectandi'' (1713). The mathematical formalisation of the Bernoulli trial is known as the Bernoulli process. This article offers an elementary introduction to the concept, whereas the article on the Bernoulli process offers a more advanced treatment. Since a Bernoulli trial has only two possible outcomes, it can be framed as some "yes or no" question. For example: *Is the top card of a shuffled deck an ace? *Was the newborn child a girl? (See human sex ratio.) Therefore, success and failure are merely labels for the two outcomes, and should not be construed literally. The term "success" in this sense consists in the result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Sampling
In survey methodology, Poisson sampling (sometimes denoted as ''PO sampling'') is a sampling process where each element of the population is subjected to an independent Bernoulli trial which determines whether the element becomes part of the sample.Ghosh, Dhiren, and Andrew Vogt. "Sampling methods related to Bernoulli and Poisson Sampling." Proceedings of the Joint Statistical Meetings. American Statistical Association Alexandria, VA, 2002(pdf)/ref> Each element of the population may have a different probability of being included in the sample (\pi_i). The probability of being included in a sample during the drawing of a single sample is denoted as the ''first-order inclusion probability'' of that element (p_i). If all first-order inclusion probabilities are equal, Poisson sampling becomes equivalent to Bernoulli sampling, which can therefore be considered to be a special case of Poisson sampling. A mathematical consequence of Poisson sampling Mathematically, the first-order in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sampling Error
In statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.Sarndal, Swenson, and Wretman (1992), Model Assisted Survey Sampling, Springer-Verlag, For example, if one measures the height of a thousand individuals from a population of one million, the average height of the thousand is typically not the same as the average height of all one million people in the country. Since sampling is almost always done to estimate population parameters that are unknown, by definition exact measurement of the sampling errors will not be possible; however they can often be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




First-order Inclusion Probability
In statistics, in the theory relating to sampling from finite populations, the sampling probability (also known as inclusion probability) of an element or member of the population, is its probability of becoming part of the sample during the drawing of a single sample. For example, in simple random sampling the probability of a particular unit i to be selected into the sample is :p_ = \frac = \frac where n is the sample size and N is the population size. Each element of the population may have a different probability of being included in the sample. The inclusion probability is also termed the "first-order inclusion probability" to distinguish it from the "second-order inclusion probability", i.e. the probability of including a pair of elements. Generally, the first-order inclusion probability of the ''i''th element of the population is denoted by the symbol π''i'' and the second-order inclusion probability that a pair consisting of the ''i''th and ''j''th element of the populat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linearization
In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology. Linearization of a function Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function y = f(x) at any x = a based on the value and slope of the function at x = b, given that f(x) is differentiable on , b/math> (or , a/math>) and that a is close to b. In short, linearization approximates the output of a function near x = a. For example, \sqrt = 2. However, what would be a go ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Correct Sampling
During sampling of granular materials (whether airborne, suspended in liquid, aerosol, or aggregated), correct sampling is defined in Gy's sampling theory as a sampling scenario in which all particles in a population have the same probability of ending up in the sample. The concentration of the property of interest in a sample can be a biased estimate for the concentration of the property of interest in the population from which the sample is drawn. Although generally non-zero, for correct sampling this bias is thought to be negligible. See also *Particle filter * Particle in a box *Particulate matter sampler *Statistical sampling In statistics, quality assurance, and survey methodology, sampling is the selection of a subset (a statistical sample) of individuals from within a statistical population to estimate characteristics of the whole population. Statisticians atte ... * Gy's sampling theory References Sampling (statistics) Particulates Meteorological instr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]