Grothendieck Ring
   HOME
*





Grothendieck Ring
In commutative algebra, a G-ring or Grothendieck ring is a Noetherian ring such that the map of any of its local rings to the completion is regular (defined below). Almost all Noetherian rings that occur naturally in algebraic geometry or number theory are G-rings, and it is quite hard to construct examples of Noetherian rings that are not G-rings. The concept is named after Alexander Grothendieck. A ring that is a both G-ring and a J-2 ring is called a quasi-excellent ring, and if in addition it is universally catenary it is called an excellent ring. Definitions *A (Noetherian) ring ''R'' containing a field ''k'' is called geometrically regular over ''k'' if for any finite extension ''K'' of ''k'' the ring ''R'' âŠ—''k'' ''K'' is a regular ring. *A homomorphism of rings from ''R'' to ''S'' is called regular if it is flat and for every ''p'' âˆˆ Spec(''R'') the fiber ''S'' âŠ—''R'' ''k''(''p'') is geometrically regular over the residue field ''k''( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universally Catenary
In mathematics, a commutative ring ''R'' is catenary if for any pair of prime ideals :''p'', ''q'', any two strictly increasing chains :''p''=''p''0 ⊂''p''1 ... ⊂''p''''n''= ''q'' of prime ideals are contained in maximal strictly increasing chains from ''p'' to ''q'' of the same (finite) length. In a geometric situation, in which the dimension of an algebraic variety attached to a prime ideal will decrease as the prime ideal becomes bigger, the length of such a chain ''n'' is usually the difference in dimensions. A ring is called universally catenary if all finitely generated algebras over it are catenary rings. The word 'catenary' is derived from the Latin word ''catena'', which means "chain". There is the following chain of inclusions. Dimension formula Suppose that ''A'' is a Noetherian domain and ''B'' is a domain containing ''A'' that is finitely generated over ''A''. If ''P'' is a prime ideal of ''B'' and ''p'' its intersection with ''A'', then :\text(P)\l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Popescu's Theorem
In commutative algebra and algebraic geometry, Popescu's theorem, introduced by Dorin Popescu, states: :Let ''A'' be a Noetherian ring and ''B'' a Noetherian algebra over it. Then, the structure map ''A'' → ''B'' is a regular homomorphism if and only if ''B'' is a direct limit of smooth ''A''-algebras. For example, if ''A'' is a local G-ring (e.g., a local excellent ring) and ''B'' its completion, then the map ''A'' → ''B'' is regular by definition and the theorem applies. Another proof of Popescu's theorem was given by Tetsushi Ogoma, while an exposition of the result was provided by Richard Swan. The usual proof of the Artin approximation theorem In mathematics, the Artin approximation theorem is a fundamental result of in deformation theory which implies that formal power series with coefficients in a field (mathematics), field ''k'' are well-approximated by the algebraic functions on ''k' ... relies crucially on Popescu's theorem. Popescu's result was proved by an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Ring
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ideal m, and suppose ''a''1, ..., ''a''''n'' is a minimal set of generators of m. Then by Krull's principal ideal theorem ''n'' ≥ dim ''A'', and ''A'' is defined to be regular if ''n'' = dim ''A''. The appellation ''regular'' is justified by the geometric meaning. A point ''x'' on an algebraic variety ''X'' is nonsingular if and only if the local ring \mathcal_ of germs at ''x'' is regular. (See also: regular scheme.) Regular local rings are ''not'' related to von Neumann regular rings. For Noetherian local rings, there is the following chain of inclusions: Characterizations There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if A is a Noetherian local ring with maximal idea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrically Regular
In algebraic geometry, a geometrically regular ring is a Noetherian ring over a field that remains a regular ring after any finite extension of the base field. Geometrically regular schemes are defined in a similar way. In older terminology, points with regular local rings were called simple points, and points with geometrically regular local rings were called absolutely simple points. Over fields that are of characteristic 0, or algebraically closed, or more generally perfect, geometrically regular rings are the same as regular rings. Geometric regularity originated when Claude Chevalley and André Weil pointed out to that, over non-perfect fields, the Jacobian criterion for a simple point of an algebraic variety is not equivalent to the condition that the local ring is regular. A Noetherian local ring containing a field ''k'' is geometrically regular over ''k'' if and only if it is formally smooth over ''k''. Examples gave the following two examples of local rings that a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Excellent Ring
In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal. The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities can be solved; showed this in characteristic (algebra), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-excellent Ring
In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal. The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities can be solved; showed this in characteristic 0, but th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


J-2 Ring
In commutative algebra, a J-0 ring is a ring R such that the set of regular points, that is, points p of the spectrum at which the localization R_p is a regular local ring, contains a non-empty open subset, a J-1 ring is a ring such that the set of regular points is an open subset, and a J-2 ring is a ring such that any finitely generated algebra over the ring is a J-1 ring. Examples Most rings that occur in algebraic geometry or number theory are J-2 rings, and in fact it is not trivial to construct any examples of rings that are not. In particular all excellent rings are J-2 rings; in fact this is part of the definition of an excellent ring. All Dedekind domains of characteristic 0 and all local Noetherian rings of dimension at most 1 are J-2 rings. The family of J-2 rings is closed under taking localizations and finitely generated algebras. For an example of a Noetherian domain that is not a J-0 ring, take ''R'' to be the subring of the polynomial ring ''k'' 'x''1,''x''2,... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]