Greibach's Theorem
   HOME





Greibach's Theorem
In theoretical computer science, in particular in formal language theory, Greibach's theorem states that certain properties of formal language classes are undecidable. It is named after the computer scientist Sheila Greibach, who first proved it in 1963. Definitions Given a set Σ, often called "alphabet", the (infinite) set of all strings built from members of Σ is denoted by Σ *. A formal language is a subset of Σ*. If ''L''1 and ''L''2 are formal languages, their product ''L''1''L''2 is defined as the set of all concatenations of a string ''w''1 from ''L''1 with a string ''w''2 from ''L''2. If ''L'' is a formal language and ''a'' is a symbol from Σ, their quotient ''L''/''a'' is defined as the set of all strings that can be made members of ''L'' by appending an ''a''. Various approaches are known from formal language theory to denote a formal language by a finite description, such as a formal grammar or a finite-state machine. For example, using an alphabet Σ = , the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Computer Science
Theoretical computer science is a subfield of computer science and mathematics that focuses on the Abstraction, abstract and mathematical foundations of computation. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with A Mathematical Theory of Communication, a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of neural networks and para ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Grammar
A formal grammar is a set of Terminal and nonterminal symbols, symbols and the Production (computer science), production rules for rewriting some of them into every possible string of a formal language over an Alphabet (formal languages), alphabet. A grammar does not describe the semantics, meaning of the strings — only their form. In applied mathematics, formal language theory is the discipline that studies formal grammars and languages. Its applications are found in theoretical computer science, theoretical linguistics, Formal semantics (logic), formal semantics, mathematical logic, and other areas. A formal grammar is a Set_(mathematics), set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given string belongs to the language or is grammatical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Context-sensitive Grammar
A context-sensitive grammar (CSG) is a formal grammar in which the left-hand sides and right-hand sides of any Production (computer science), production rules may be surrounded by a context of terminal symbol, terminal and nonterminal symbols. Context-sensitive grammars are more general than context-free grammars, in the sense that there are languages that can be described by a CSG but not by a context-free grammar. Context-sensitive grammars are less general (in the same sense) than unrestricted grammars. Thus, CSGs are positioned between context-free and unrestricted grammars in the Chomsky hierarchy. A formal language that can be described by a context-sensitive grammar, or, equivalently, by a noncontracting grammar or a linear bounded automaton, is called a context-sensitive language. Some textbooks actually define CSGs as non-contracting, although this is not how Noam Chomsky defined them in 1959. This choice of definition makes no difference in terms of the languages generated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ambiguous Grammar
In computer science, an ambiguous grammar is a context-free grammar for which there exists a string (computer science), string that can have more than one leftmost derivation or parse tree. Every non-empty context-free language admits an ambiguous grammar by introducing e.g. a duplicate rule. A language that only admits ambiguous grammars is called an #Inherently ambiguous languages, inherently ambiguous language. Deterministic context-free grammars are always unambiguous, and are an important subclass of unambiguous grammars; there are non-deterministic unambiguous grammars, however. For computer programming languages, the reference grammar is often ambiguous, due to issues such as the dangling else problem. If present, these ambiguities are generally resolved by adding precedence rules or other context-sensitive grammar, context-sensitive parsing rules, so the overall phrase grammar is unambiguous. Some parsing algorithms (such as Earley parser, Earley or Generalized LR parser, GL ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Context-free Language
In formal language theory, a context-free language (CFL), also called a Chomsky type-2 language, is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Background Context-free grammar Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language. Automata The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct. Examples An e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Language
In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are Regular expression#Patterns for non-regular languages, augmented with features that allow the recognition of non-regular languages). Alternatively, a regular language can be defined as a language recognised by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by regular grammar, Type-3 grammars. Formal definition The collection of regular languages over an Alphabet (formal languages), alphabet Σ is defined recursively as follows: * The empty language ∅ is a regular language. * For each ''a'' ∈ Σ (''a'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Context-free Grammar
In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form : A\ \to\ \alpha with A a ''single'' nonterminal symbol, and \alpha a string of terminals and/or nonterminals (\alpha can be empty). Regardless of which symbols surround it, the single nonterminal A on the left hand side can always be replaced by \alpha on the right hand side. This distinguishes it from a context-sensitive grammar, which can have production rules in the form \alpha A \beta \rightarrow \alpha \gamma \beta with A a nonterminal symbol and \alpha, \beta, and \gamma strings of terminal and/or nonterminal symbols. A formal grammar is essentially a set of production rules that describe all possible strings in a given formal language. Production rules are simple replacements. For example, the first rule in the picture, : \lan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Language
In theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are Regular expression#Patterns for non-regular languages, augmented with features that allow the recognition of non-regular languages). Alternatively, a regular language can be defined as a language recognised by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem (after American mathematician Stephen Cole Kleene). In the Chomsky hierarchy, regular languages are the languages generated by regular grammar, Type-3 grammars. Formal definition The collection of regular languages over an Alphabet (formal languages), alphabet Σ is defined recursively as follows: * The empty language ∅ is a regular language. * For each ''a'' ∈ Σ (''a'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Context-free Grammar
In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form : A\ \to\ \alpha with A a ''single'' nonterminal symbol, and \alpha a string of terminals and/or nonterminals (\alpha can be empty). Regardless of which symbols surround it, the single nonterminal A on the left hand side can always be replaced by \alpha on the right hand side. This distinguishes it from a context-sensitive grammar, which can have production rules in the form \alpha A \beta \rightarrow \alpha \gamma \beta with A a nonterminal symbol and \alpha, \beta, and \gamma strings of terminal and/or nonterminal symbols. A formal grammar is essentially a set of production rules that describe all possible strings in a given formal language. Production rules are simple replacements. For example, the first rule in the picture, : \lan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Of A Formal Language
In mathematics and computer science, the right quotient (or simply quotient) of a language L_1 with respect to language L_2 is the language consisting of strings ''w'' such that ''wx'' is in L_1 for some string ''x'' in Formally: L_1 / L_2 = \ In other words, for all the strings in L_1 that have a suffix in L_2, the suffix is removed. Similarly, the left quotient of L_1 with respect to L_2 is the language consisting of strings ''w'' such that ''xw'' is in L_1 for some string ''x'' in L_2. Formally: L_2 \backslash L_1 = \ In other words, we take all the strings in L_1 that have a prefix in L_2, and remove this prefix. Note that the operands of \backslash are in reverse order: the first operand is L_2 and L_1 is second. Example Consider L_1 = \ and L_2 = \. Now, if we insert a divider into an element of L_1, the part on the right is in L_2 only if the divider is placed adjacent to a ''b'' (in which case ''i'' ≤ ''n'' and ''j'' = ''n'') or adjacent to a ''c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Grammar
In theoretical computer science and formal language theory, a regular grammar is a grammar that is ''right-regular'' or ''left-regular''. While their exact definition varies from textbook to textbook, they all require that * all production rules have at most one non-terminal symbol; * that symbol is either always at the end or always at the start of the rule's right-hand side. Every regular grammar describes a regular language. Strictly regular grammars A right-regular grammar (also called right-linear grammar) is a formal grammar (''N'', Σ, ''P'', ''S'') in which all production rules in ''P'' are of one of the following forms: # ''A'' → ''a'' # ''A'' → ''aB'' # ''A'' → ε where ''A'', ''B'', ''S'' ∈ ''N'' are non-terminal symbols, ''a'' ∈ Σ is a terminal symbol, and ε denotes the empty string, i.e. the string of length 0. ''S'' is called the start symbol. In a left-regular grammar, (also called left-linear grammar), all rules obey the forms # ''A'' → ''a'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Language Theory
In logic, mathematics, computer science, and linguistics, a formal language is a set of string (computer science), strings whose symbols are taken from a set called "#Definition, alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called Formal language#Definition, ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]