Gravitational Interaction Of Antimatter
   HOME
*





Gravitational Interaction Of Antimatter
The gravitational interaction of antimatter with matter or antimatter has not been observed by physicists. While the consensus among physicists is that gravity is expected to attract both matter and antimatter at the same rate that matter attracts matter, this is not experimentally confirmed. Antimatter's rarity and tendency to annihilate when brought into contact with matter makes its study a technically demanding task. Furthermore, gravity is much weaker than the other fundamental forces, for reasons still of interest to physicists, complicating efforts to study gravity in systems small enough to be feasibly created in lab, including antimatter systems. Most methods for the creation of antimatter (specifically antihydrogen) result in particles and atoms of high kinetic energy, which are unsuitable for gravity-related study. In addition to uncertainty regarding whether antimatter is gravitationally attracted or repulsed from other matter, it is also unknown whether the mag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, "matter" generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states (also known as phases). These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma. Usually atoms can be imagined as a nucleus of protons and neutrons, and a surro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Lensing
A gravitational lens is a distribution of matter (such as a galaxy cluster, cluster of galaxies) between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein's General relativity, general theory of relativity. Treating light as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity. Although Einstein made unpublished calculations on the subject in 1912, Orest Khvolson (1924) and Frantisek Link (1936) are generally credited with being the first to discuss the effect in print. However, this effect is more commonly associated with Einstein, who published an article on the subject in 1936. Fritz Zwicky posited in 1937 that the effect could allow galaxy clusters to act as gravitational lense ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gabriel Chardin
In Abrahamic religions (Judaism, Christianity and Islam), Gabriel (); Greek: grc, Γαβριήλ, translit=Gabriḗl, label=none; Latin: ''Gabriel''; Coptic: cop, Ⲅⲁⲃⲣⲓⲏⲗ, translit=Gabriêl, label=none; Amharic: am, ገብርኤል, translit=Gabrəʾel, label=none; arc, ܓ݁ܰܒ݂ܪܺܝܐܝܶܠ, translit=Gaḇrīʾēl; ar, جِبْرِيل, Jibrīl, also ar, جبرائيل, Jibrāʾīl or ''Jabrāʾīl'', group="N" is an archangel with power to announce God's will to men. He is mentioned in the Hebrew Bible, the New Testament, and the Quran. Many Christian traditions — including Anglicanism, Eastern Orthodoxy, and Roman Catholicism — revere Gabriel as a saint. In the Hebrew Bible, Gabriel appears to the prophet Daniel to explain his visions (Daniel 8:15–26, 9:21–27). The archangel also appears in the Book of Enoch and other ancient Jewish writings not preserved in Hebrew. Alongside the archangel Michael, Gabriel is described as the guardian angel of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kaon
KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe. Its first incarnation was developed in 2002 and supported an enhanced version of RDF ontologies. Several tools like the graphical ontology editor OIModeler or the KAON Server were based on KAON. There are ontology learning companion tools which take non-annotated natural language text as input: TextToOnto (KAON-based) and Text2Onto (KAON2-based). Text2Onto is based on the Probabilistic Ontology Model (POM). In 2005, the first version of KAON2 was released, offering fast reasoning support for OWL ontologies. KAON2 is not backward-compatible with KAON. KAON2 is developed as a joint effort of the Information Process Engineering (IPE) at the Research Center for Information Technologies (FZI), the Institute of Applied Informatics and Formal Description Methods (AIFB) at the University of Karlsruhe, and the Information Ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Myron L
Myron of Eleutherae ( grc, Μύρων, ''Myrōn'' ), working c. 480–440 BC, was an Athenian sculptor from the mid-5th century BC. He was born in Eleutherae on the borders of Boeotia and Attica. According to Pliny's '' Natural History'', Ageladas of Argos was his teacher. None of his original sculptures are known to survive, but there are many of what are believed to be later copies in marble, mostly Roman. Reputation Myron worked almost exclusively in bronze and his fame rested principally upon his representations of athletes (including his iconic ''Diskobolos''), in which he made a revolution, according to commentators in Antiquity, by introducing greater boldness of pose and a more perfect rhythm, subordinating the parts to the whole. Pliny's remark that Myron's works were ''numerosior'' than those of Polycleitus and "more diligent" seem to suggest that they were considered more harmonious in proportions (''numeri'') and at the same time more convincing in realism: ''diligen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eötvös Experiment
The Eötvös experiment was a famous physics experiment that measured the correlation between inertial mass and gravitational mass, demonstrating that the two were one and the same, something that had long been suspected but never demonstrated with the same accuracy. The earliest experiments were done by Isaac Newton (1642–1727) and improved upon by Friedrich Wilhelm Bessel (1784–1846). A much more accurate experiment using a torsion balance was carried out by Loránd Eötvös starting around 1885, with further improvements in a lengthy run between 1906 and 1909. Eötvös's team followed this with a series of similar but more accurate experiments, as well as experiments with different types of materials and in different locations around the Earth, all of which demonstrated the same equivalence in mass. In turn, these experiments led to the modern understanding of the ''equivalence principle'' encoded in general relativity, which states that the gravitational and inertial masses a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leonard I
Leonard or ''Leo'' is a common English masculine given name and a surname. The given name and surname originate from the Old High German ''Leonhard'' containing the prefix ''levon'' ("lion") from the Greek Λέων ("lion") through the Latin '' Leo,'' and the suffix ''hardu'' ("brave" or "hardy"). The name has come to mean "lion strength", "lion-strong", or "lion-hearted". Leonard was the name of a Saint in the Middle Ages period, known as the patron saint of prisoners. Leonard is also an Irish origin surname, from the Gaelic ''O'Leannain'' also found as O'Leonard, but often was anglicised to just Leonard, consisting of the prefix ''O'' ("descendant of") and the suffix ''Leannan'' ("lover"). The oldest public records of the surname appear in 1272 in Huntingdonshire, England, and in 1479 in Ulm, Germany. Variations The name has variants in other languages: * Leen, Leendert, Lenard (Dutch) * Lehnertz, Lehnert (Luxembourgish) * Len (English) * :hu:Lénárd (Hungarian) * Lenart ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Second Law Of Thermodynamics
The second law of thermodynamics is a physical law based on universal experience concerning heat and Energy transformation, energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unless energy in some form is supplied to reverse the direction of heat flow. Another definition is: "Not all heat energy can be converted into Work (thermodynamics), work in a cyclic process."Young, H. D; Freedman, R. A. (2004). ''University Physics'', 11th edition. Pearson. p. 764. The second law of thermodynamics in other versions establishes the concept of entropy as a physical property of a thermodynamic system. It can be used to predict whether processes are forbidden despite obeying the requirement of conservation of energy as expressed in the first law of thermodynamics and provides necessary criteria for spontaneous processes. The second law may be formulated by the observation that the entropy of isolated systems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pair Production
Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifically to a photon creating an electron–positron pair near a nucleus. As energy must be conserved, for pair production to occur, the incoming energy of the photon must be above a threshold of at least the total rest mass energy of the two particles created. (As the electron is the lightest, hence, lowest mass/energy, elementary particle, it requires the least energetic photons of all possible pair-production processes.) Conservation of energy and momentum are the principal constraints on the process. All other conserved quantum numbers (angular momentum, electric charge, lepton number) of the produced particles must sum to zero thus the created particles shall have opposite values of each other. For instance, if one particle has electric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philip Morrison
Philip Morrison (November 7, 1915 – April 22, 2005) was a professor of physics at the Massachusetts Institute of Technology (MIT). He is known for his work on the Manhattan Project during World War II, and for his later work in quantum physics, nuclear physics high energy astrophysics, and SETI. A graduate of Carnegie Tech, Morrison became interested in physics, which he studied at the University of California, Berkeley, under the supervision of J. Robert Oppenheimer. He also joined the Communist Party. During World War II he joined the Manhattan Project's Metallurgical Laboratory at the University of Chicago, where he worked with Eugene Wigner on the design of nuclear reactors. In 1944 he moved to the Manhattan Project's Los Alamos Laboratory in New Mexico, where he worked with George Kistiakowsky on the development of explosive lenses required to detonate the implosion-type nuclear weapon. Morrison transported the core of the Trinity test device to the test site in the bac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CPT Theorem
Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry. History The CPT theorem appeared for the first time, implicitly, in the work of Julian Schwinger in 1951 to prove the connection between spin and statistics. In 1954, Gerhart Lüders and Wolfgang Pauli derived more explicit proofs, so this theorem is sometimes known as the Lüders–Pauli theorem. At about the same time, and independently, this theorem was also proved by John Stewart Bell. These proofs are based on the principle of Lorentz invariance and the princ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GBAR Experiment
GBAR (Gravitational Behaviour of Anti hydrogen at Rest), AD-7 experiment, is a multinational collaboration at the Antiproton Decelerator of CERN. The GBAR project aims to measure the free-fall acceleration of ultra-cold neutral anti-hydrogen atoms in the terrestrial gravitational field. By measuring the free fall acceleration of anti-hydrogen and comparing it with acceleration of normal hydrogen, GBAR is testing the equivalence principle proposed by Albert Einstein. The equivalence principle says that the gravitational force on a particle is independent of its internal structure and composition. Experimental setup The experiment consists of preparing anti-hydrogen ions (Hbar+positronium- one antiproton and two positrons) and sympathetically cooling them with Be+ ions to less than 10 μK. The ultra-cold ions are then photoionized just above the threshold using a laser pulse; this removes the outermost positron and forms neutral anti-hydrogen. The free-fall time of these atoms o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]