Goldberger–Wise Mechanism
   HOME
*





Goldberger–Wise Mechanism
In particle physics, the Goldberger–Wise mechanism is a popular mechanism that determines the size of the fifth dimension in Randall–Sundrum models. The mechanism uses a scalar field that propagates throughout the five-dimensional bulk. On each of the branes that end the fifth dimension (frequently referred to as the Planck brane and TeV brane, respectively) there is a potential for this scalar field. The minima for the potentials on the Planck brane and TeV brane are different and causes the vacuum expectation value of the scalar field to change throughout the fifth dimension. This configuration generates a potential for the radion causing it to have a vacuum expectation value and a mass. With reasonable values for the scalar potential, the size of the extra dimension is large enough to solve the hierarchy problem In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review Letters
''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journal Citation Reports'' impact factor and the journal ''h''-index proposed by Google Scholar, many physicists and other scientists consider ''Physical Review Letters'' to be one of the most prestigious journals in the field of physics. ''According to Google Scholar, PRL is the journal with the 9th journal h-index among all scientific journals'' ''PRL'' is published as a print journal, and is in electronic format, online and CD-ROM. Its focus is rapid dissemination of significant, or notable, results of fundamental research on all topics related to all fields of physics. This is accomplished by rapid publication of short reports, called "Letters". Papers are published and available electronically one article at a time. When published in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics Letters B
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Randall–Sundrum Model
In physics, Randall–Sundrum models (also called 5-dimensional warped geometry theory) are models that describe the world in terms of a warped-geometry higher-dimensional universe, or more concretely as a 5-dimensional anti-de Sitter space where the elementary particles (except the graviton) are localized on a (3 + 1)-dimensional brane or branes. The two models were proposed in two articles in 1999 by Lisa Randall and Raman Sundrum because they were dissatisfied with the universal extra-dimensional models then in vogue. Such models require two fine tunings; one for the value of the bulk cosmological constant and the other for the brane tensions. Later, while studying RS models in the context of the anti-de Sitter / conformal field theory (AdS/CFT) correspondence, they showed how it can be dual to technicolor models. The first of the two models, called RS1, has a finite size for the extra dimension with two branes, one at each end. The second, RS2, is similar to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radion (physics)
In theoretical physics, the hypothetical particle called the graviscalar or radion emerges as an excitation of general relativity's metric tensor, i.e. gravitational field, but is indistinguishable from a scalar in four dimensions, as shown in Kaluza–Klein theory. The scalar field \phi comes from a component of the metric tensor g_ where the figure 5 labels an additional fifth dimension. The only variations in the scalar field represent variations in the size of the extra dimension. Also, in models with multiple extra dimensions, there exist several such particles. Moreover, in theories with extended supersymmetry, a graviscalar is usually a superpartner of the graviton that behaves as a particle with spin 0. This concept closely relates to the gauged Higgs models. See also * Graviphoton (aka gravivector) * Dilaton * Kaluza–Klein theory * Randall–Sundrum models * Goldberger–Wise mechanism In particle physics, the Goldberger–Wise mechanism is a popular mech ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hierarchy Problem
In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity. Technical definition A hierarchy problem occurs when the fundamental value of some physical parameter, such as a coupling constant or a mass, in some Lagrangian is vastly different from its effective value, which is the value that gets measured in an experiment. This happens because the effective value is related to the fundamental value by a prescription known as renormalization, which applies corrections to it. Typically the renormalized value of parameters are close to their fundamental values, but in some cases, it appears that there has been a delicate cancellation between the fundamental quantity and the quantum corrections. Hierarchy problems are related to fine-tuning problems and problems of naturalness. Over the past decade ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]