Goldbach's Conjecture
   HOME
*





Goldbach's Conjecture
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4 × 1018, but remains unproven despite considerable effort. History On 7 June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII), in which he proposed the following conjecture: Goldbach was following the now-abandoned convention of considering 1 to be a prime number, so that a sum of units would indeed be a sum of primes. He then proposed a second conjecture in the margin of his letter, which implies the first: Euler replied in a letter dated 30 June 1742 and reminded Goldbach of an earlier conversation they had had (), in which Goldbach had remarked that the first of those two conjectures would follow from the statement This is in fact equivalent to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nikolai Chudakov
Nikolai Grigor'evich Chudakov (russian: Никола́й Григо́рьевич Чудако́в; 1904–1986) was a Russian and Soviet mathematician. He was born in Lysovsk, Novo-Burassk, Saratov, Russian Empire. His father worked as a medical assistant. Biography He first studied at the Faculty of Physics and Mathematics at Saratov State University, but then he transferred to Moscow University. He then graduated in 1927. In 1930, he was named head of higher mathematics at Saratov University. In 1936, he successfully defended his thesis and became a Doctor of Science. Among others, he considerably improved a result from Guido Hoheisel and Hans Heilbronn on an upper bound for prime gaps. He worked in Moscow Moscow ( , US chiefly ; rus, links=no, Москва, r=Moskva, p=mɐskˈva, a=Москва.ogg) is the capital and largest city of Russia. The city stands on the Moskva River in Central Russia, with a population estimated at 13.0 million ... until 1940, but then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Goldbach Conjecture
In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that : Every odd number greater than 5 can be expressed as the sum of three primes. (A prime may be used more than once in the same sum.) This conjecture is called "weak" because if Goldbach's ''strong'' conjecture (concerning sums of two primes) is proven, then this would also be true. For if every even number greater than 4 is the sum of two odd primes, adding 3 to each even number greater than 4 will produce the odd numbers greater than 7 (and 7 itself is equal to 2+2+3). In 2013, Harald Helfgott released a proof of Goldbach's weak conjecture. As of 2018, the proof is widely accepted in the mathematics community, but it has not yet been published in a peer-reviewed journal. The proof was accepted for publication in the '' Annals of Mathematics Studies'' series in 2015, and has been undergoing further review and revision since; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trial Division
Trial division is the most laborious but easiest to understand of the integer factorization algorithms. The essential idea behind trial division tests to see if an integer ''n'', the integer to be factored, can be divided by each number in turn that is less than ''n''. For example, for the integer , the only numbers that divide it are 1, 2, 3, 4, 6, 12. Selecting only the largest powers of primes in this list gives that . Trial division was first described by Fibonacci in his book ''Liber Abaci'' (1202). Method Given an integer ''n'' (''n'' refers to "the integer to be factored"), the trial division consists of systematically testing whether ''n'' is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than ''n'', and in order from two upwards because an arbitrary ''n'' is more likely to be divisible by two than by three, and so on. With this ordering, there is no point in testing for divisibility by four if the number has already b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goldbach's Comet
Goldbach's comet is the name given to a plot of the function g(E), the so-called Goldbach function . The function, studied in relation to Goldbach's conjecture, is defined for all even integers E > 2 to be the number of different ways in which ''E'' can be expressed as the sum of two primes. For example, g(22) = 3 since 22 can be expressed as the sum of two primes in three different ways (22 = 11+11 = 5+17 = 3+19). The coloring of points in the above image is based on the value of E/2 modulo 3 with red points corresponding to 0 mod 3, blue points corresponding to 1 mod 3 and green points corresponding to 2 mod 3. In other words, the red points are multiples of 6, the blue points are multiples of 6 plus 2, and the green points are multiples of 6 plus 4. Anatomy of the Goldbach Comet An illuminating way of presenting the comet data is as a histogram. The function g(E) can be normalized by dividing by the locally averaged value of ''g'', gav, taken over perhaps 1000 neighbori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ivan Matveevich Vinogradov
Ivan Matveevich Vinogradov ( rus, Ива́н Матве́евич Виногра́дов, p=ɪˈvan mɐtˈvʲejɪvʲɪtɕ vʲɪnɐˈɡradəf, a=Ru-Ivan_Matveyevich_Vinogradov.ogg; 14 September 1891 – 20 March 1983) was a Soviet mathematician, who was one of the creators of modern analytic number theory, and also a dominant figure in mathematics in the USSR. He was born in the Velikiye Luki district, Pskov Oblast. He graduated from the University of St. Petersburg, where in 1920 he became a Professor. From 1934 he was a Director of the Steklov Institute of Mathematics, a position he held for the rest of his life, except for the five-year period (1941–1946) when the institute was directed by Academician Sergei Sobolev. In 1941 he was awarded the Stalin Prize. In 1951 he became a foreign member of the Polish Academy of Sciences and Letters in Kraków. Mathematical contributions In analytic number theory, ''Vinogradov's method'' refers to his main problem-solving technique, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constraint (mathematics)
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. Example The following is a simple optimization problem: :\min f(\mathbf x) = x_1^2+x_2^4 subject to :x_1 \ge 1 and :x_2 = 1, where \mathbf x denotes the vector (''x''1, ''x''2). In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint. These two constraints are hard constraints, meaning that it is required that they be satisfied; they define the feasible set of candidate solutions. Without the constraints, the solution would be (0,0), whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twin Prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair (2, 3) is not considered to be a pair of twin primes. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Edensor Littlewood
John Edensor Littlewood (9 June 1885 – 6 September 1977) was a British mathematician. He worked on topics relating to analysis, number theory, and differential equations, and had lengthy collaborations with G. H. Hardy, Srinivasa Ramanujan and Mary Cartwright. Biography Littlewood was born on 9 June 1885 in Rochester, Kent, the eldest son of Edward Thornton Littlewood and Sylvia Maud (née Ackland). In 1892, his father accepted the headmastership of a school in Wynberg, Cape Town, in South Africa, taking his family there. Littlewood returned to Britain in 1900 to attend St Paul's School in London, studying under Francis Sowerby Macaulay, an influential algebraic geometer. In 1903, Littlewood entered the University of Cambridge, studying in Trinity College. He spent his first two years preparing for the Tripos examinations which qualify undergraduates for a bachelor's degree where he emerged in 1905 as Senior Wrangler bracketed with James Mercer (Mercer had already ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]