Gluing Schemes
   HOME
*



picture info

Gluing Schemes
In algebraic geometry, a new scheme (e.g. an algebraic variety) can be obtained by gluing existing schemes through gluing maps. Statement Suppose there is a (possibly infinite) family of schemes \_ and for pairs i, j, there are open subsets U_ and isomorphisms \varphi_ : U_ \overset\to U_. Now, if the isomorphisms are compatible in the sense: for each i, j, k, # \varphi_ = \varphi_^, # \varphi_(U_ \cap U_) = U_ \cap U_, # \varphi_ \circ \varphi_ = \varphi_ on U_ \cap U_, then there exists a scheme ''X'', together with the morphisms \psi_i : X_i \to X such that # \psi_i is an isomorphism onto an open subset of ''X'', # X = \cup_i \psi_i(X_i), # \psi_i(U_) = \psi_i(X_i) \cap \psi_j(X_j), # \psi_i = \psi_j \circ \varphi_ on U_. Examples Projective line Let X = \operatorname(k \simeq \mathbb^1, Y = \operatorname(k \simeq \mathbb^1 be two copies of the affine line over a field ''k''. Let X_t = \ = \operatorname(k, t^ The comma is a punctuation mark that appears in sev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a monic polynomial (an algebraic object) in one variable with complex number coefficients is determined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Projective Line
In geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line (geometry), line that has been historically introduced to solve a problem set by visual perspective (visual), perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point. The set of these points at infinity, the "horizon" of the visual perspective in the plane, is a real projective line. It is the set of directions emanating from an observer situated at any point, with opposite directions identified. An example of a real projective line is the projectively extended real line, which is often called ''the'' projective line. Formally, a real projective line P(R) is defined as the set of all one-dimensional linear subspaces of a two-dimensional vector space ove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separated Scheme
In algebraic geometry, given a morphism of schemes p: X \to S, the diagonal morphism :\delta: X \to X \times_S X is a morphism determined by the universal property of the fiber product X \times_S X of ''p'' and ''p'' applied to the identity 1_X : X \to X and the identity 1_X. It is a special case of a graph morphism: given a morphism f: X \to Y over ''S'', the graph morphism of it is X \to X \times_S Y induced by f and the identity 1_X. The diagonal embedding is the graph morphism of 1_X. By definition, ''X'' is a separated scheme over ''S'' (p: X \to S is a separated morphism) if the diagonal morphism is a closed immersion. Also, a morphism p: X \to S locally of finite presentation is an unramified morphism if and only if the diagonal embedding is an open immersion. Explanation As an example, consider an algebraic variety over an algebraically closed field ''k'' and p: X \to \operatorname(k) the structure map. Then, identifying ''X'' with the set of its ''k''-rational points, X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Point At Infinity
In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a projective plane, in which no point can be distinguished, if we "forget" which points were added. This holds for a geometry over any field, and more generally over any division ring. In the real case, a point at infinity completes a line into a topologically closed curve. In higher dimensions, all the points at infinity form a projective subspace of one dimension less than that of the whole projective space to which they belong. A point at infinity can also be added to the complex line (which may be thought of as the complex plane), thereby turning it into a closed surface known as the complex projective line, CP1, also called the Riemann sphere (when complex numbers are mapped to each point). In the case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]