Glossary Of Electrical And Electronics Engineering
   HOME
*





Glossary Of Electrical And Electronics Engineering
This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering. A B C D E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Engineering
Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use. Electrical engineering is now divided into a wide range of different fields, including computer engineering, systems engineering, power engineering, telecommunications, radio-frequency engineering, signal processing, instrumentation, photovoltaic cells, electronics, and optics and photonics. Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, power electronics, electromagnetics and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, mechatronics/control, and electrical m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha–beta Transformation
In electrical engineering, the alpha-beta (\alpha\beta\gamma) transformation (also known as the Clarke transformation) is a mathematical transformation employed to simplify the analysis of three-phase circuits. Conceptually it is similar to the dq0 transformation. One very useful application of the \alpha\beta\gamma transformation is the generation of the reference signal used for space vector modulation control of three-phase inverters. History In 1937 and 1938, Edith Clarke published papers with modified methods of calculations on unbalanced three-phase problems, that turned out to be particularly useful. Definition The \alpha\beta\gamma transform applied to three-phase currents, as used by Edith Clarke, is :i_(t) = Ti_(t) = \frac\begin 1 & -\frac & -\frac \\ 0 & \frac & -\frac \\ \frac & \frac & \frac \\ \end\begini_a(t)\\i_b(t)\\i_c(t)\end where i_(t) is a generic three-phase current sequence and i_(t) is the corresponding current sequence given by the transformation T. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amplidyne
An amplidyne is an obsolete electromechanical amplifier invented prior to World War II by Ernst Alexanderson. It consists of an electric motor driving a DC generator. The signal to be amplified is applied to the generator's field winding, and its output voltage is an amplified copy of the field current. The amplidyne was used in industry in high power servo and control systems, to amplify low power control signals to control powerful electric motors, for example. It is now mostly obsolete. How an amplidyne works An amplidyne comprises an electric motor which turns a generator on the same shaft. Unlike an ordinary motor-generator, the purpose of an amplidyne is not to generate a steady voltage but to generate a voltage proportional to an input current, to amplify the input in applications where high output power is required. The motor provides the power, turning the generator at a constant speed, and the signal to be amplified is applied to the generator's field winding. The hig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ampère's Force Law
In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field, following the Biot–Savart law, and the other wire experiences a magnetic force as a consequence, following the Lorentz force law. Equation Special case: Two straight parallel wires The best-known and simplest example of Ampère's force law, which underlaid (before 20 May 2019) the definition of the ampere, the SI unit of current, states that the magnetic force per unit length between two straight parallel conductors is \frac = 2 k_ \frac , where k_ is the magnetic force constant from the Biot–Savart law, F_m / L is the total force on either wire per unit length of the shorter (the longer is approximated as infinitely long relative to the shorter), r is the distance between the two wires, and I_1, I_2 are the direct currents carried b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International System Of Units
The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. Established and maintained by the General Conference on Weights and Measures (CGPM), it is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ampere
The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to electrons worth of charge moving past a point in a second. It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted. As of the 2019 redefinition of the SI base units, the ampere is defined by fixing the elementary charge to be exactly C ( coulomb), which means an ampere is an electrical current equivalent to elementary charges moving every seconds or elementary charges moving in a second. Prior to the redefinition the ampere was defined as the current that would need to be passed through 2 parallel wires 1 metre apart to produce a magnetic force of newtons per metre. The earlier CGS system had two definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ampacity
Ampacity is a portmanteau for ''ampere capacity'' defined by National Electrical Codes, in some North American countries. Ampacity is defined as the maximum current, in amperes, that a conductor can carry continuously under the conditions of use without exceeding its temperature rating. Also described as current-carrying capacity. The ampacity of a conductor depends on its ability to dissipate heat without damage to the conductor or its insulation. This is a function of the insulation temperature rating, the electrical resistance of the conductor material, the ambient temperature, and the ability of the insulated conductor to dissipate heat to the surrounds. All common electrical conductors have some resistance to the flow of electricity. Electric current flowing through them causes voltage drop and power dissipation, which heats conductors. Copper or aluminum can conduct a large amount of current without damage, but long before conductor damage, insulation would, typically, b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amorphous Metal Transformer
An amorphous metal transformer (AMT) is a type of energy efficient transformer found on electric grids. The magnetic core of this transformer is made with a ferromagnetic amorphous metal. The typical material (Metglas) is an alloy of iron with boron, silicon, and phosphorus in the form of thin (e.g. 25 µm) foils rapidly cooled from melt. These materials have high magnetic susceptibility, very low coercivity and high electrical resistance. The high resistance and thin foils lead to low losses by eddy currents when subjected to alternating magnetic fields. On the downside amorphous alloys have a lower saturation induction and often a higher magnetostriction compared to conventional crystalline iron-silicon electrical steel. Core loss and copper loss In a transformer the no-load loss is dominated by the core loss. With an amorphous core, this can be 70–80% lower than with traditional crystalline materials. The loss under heavy load is dominated by the resistance of the coppe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ammeter
An ammeter (abbreviation of ''Ampere meter'') is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured. Instruments used to measure smaller currents, in the milliampere or microampere range, are designated as ''milliammeters'' or ''microammeters''. Early ammeters were laboratory instruments that relied on the Earth's magnetic field for operation. By the late 19th century, improved instruments were designed which could be mounted in any position and allowed accurate measurements in electric power systems. It is generally represented by letter 'A' in a circuit. History The relation between electric current, magnetic fields and physical forces was first noted by Hans Christian Ør ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aluminium Smelting
Aluminium smelting is the process of extracting aluminium from its oxide, alumina, generally by the Hall-Héroult process. Alumina is extracted from the ore bauxite by means of the Bayer process at an List of alumina refineries, alumina refinery. This is an Electrolysis, electrolytic process, so an aluminium smelting, smelter uses huge amounts of electric power; smelters tend to be located close to large power stations, often hydroelectric power plant, hydro-electric ones, in order to hold down costs and reduce the overall carbon footprint. Smelters are often located near ports, since many smelters use imported alumina. Layout of an aluminium smelter The Hall-Héroult electrolysis process is the major production route for primary aluminium. An electrolytic cell is made of a steel shell with a series of insulating linings of refractory materials. The cell consists of a brick-lined outer steel shell as a container and support. Inside the shell, cathode blocks are cemented together ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]