Ghost (physics)
   HOME
*





Ghost (physics)
In the terminology of quantum field theory, a ghost, ghost field, ghost particle, or gauge ghost is an unphysical state in a gauge theory. Ghosts are necessary to keep gauge invariance in theories where the local fields exceed a number of physical degrees of freedom. If a given theory is self-consistent by the introduction of ghosts, these states are labeled "good". Good ghosts are virtual particles that are introduced for regularization, like Faddeev–Popov ghosts. Otherwise, "bad" ghosts admit undesired non-virtual states in a theory, like Pauli–Villars ghosts that introduce particles with negative kinetic energy. An example of the need of ghost fields is the photon, which is usually described by a four component vector potential , even if light has only two allowed polarizations in the vacuum. To remove the unphysical degrees of freedom, it is necessary to enforce some restrictions, one way to do this reduction is to introduce some ghost field in the theory. While it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (physics)
In physics, a field is a physical quantity, represented by a scalar (mathematics), scalar, vector (mathematics and physics), vector, or tensor, that has a value for each Point (geometry), point in Spacetime, space and time. For example, on a weather map, the surface temperature is described by assigning a real number, number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an vector (mathematics and physics), arrow to each point on a map that describes the wind velocity, speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of Mathematical descriptions of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kinetic Term
In physics, a kinetic term is the part of the Lagrangian that is bilinear in the fields (and for nonlinear sigma models, they are not even bilinear), and usually contains two derivatives with respect to time (or space); in the case of fermions, the kinetic term usually has one derivative only. The equation of motion derived from such a Lagrangian contains differential operators which are generated by the kinetic term. Unitarity requires kinetic terms to be positive. In mechanics, the kinetic term is : T = \frac\dot x^2 = \frac\left( \frac\right)^2 . In quantum field theory, the kinetic terms for real scalar fields, electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ... and Dirac field are : T = \frac\partial_\mu \Phi \partial^\mu \Phi + \fracF_F^ + i \bar \ps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Boson
In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge bosons, usually as virtual particles. Photons, W and Z bosons, and gluons are gauge bosons. All known gauge bosons have a spin of 1; for comparison, the Higgs boson has spin zero and the hypothetical graviton has a spin of 2. Therefore, all known gauge bosons are vector bosons. Gauge bosons are different from the other kinds of bosons: first, fundamental scalar bosons (the Higgs boson); second, mesons, which are composite bosons, made of quarks; third, larger composite, non-force-carrying bosons, such as certain atoms. Gauge bosons in the Standard Model The Standard Model of particle physics recognizes four kinds of gauge bosons: photons, which carry the electromagnetic interaction; W and Z bosons, which carry the weak interaction; an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circle Group
In mathematics, the circle group, denoted by \mathbb T or \mathbb S^1, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers. \mathbb T = \. The circle group forms a subgroup of \mathbb C^\times, the multiplicative group of all nonzero complex numbers. Since \mathbb C^\times is abelian, it follows that \mathbb T is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure \theta: \theta \mapsto z = e^ = \cos\theta + i\sin\theta. This is the exponential map for the circle group. The circle group plays a central role in Pontryagin duality and in the theory of Lie groups. The notation \mathbb T for the circle group stems from the fact that, with the standard topology (see below), the circle group is a 1-torus. More generally, \mathbb T^n (the direct product of \mathbb T wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Special Unitary Group
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The groups are important in quantum computing, as they represent the possible quantum logic gate operations in a quantum circuit with n qubits and thus 2^n basis states. (Alternatively, the more genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

W And Z Bosons
In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and . The  bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The  boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The  bosons have a magnetic moment, but the has none. All three of these particles are very short-lived, with a half-life of about . Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics. The  bosons are named after the ''weak'' force. The physicist Steven Weinberg named the additional particle the " particle", — The electroweak unification paper. and later gave the explanation that it was the last additional particle neede ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Higgs Mechanism
In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/''c''2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) that permeates all space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Coll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electroweak Interaction
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015  K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the unive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spontaneous Symmetry Breaking
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry. Overview By definition, spontaneous symmetry breaking requires the existence of physical laws (e.g. quantum mechanics) which are invariant under a symmetry transformation (such as translation or rotation), so that any pair of outcomes differing only by that transformation have the same probability distribution. For example if measurements of an observable at any two different positions have the same probability distribution, the observable has translational symmetry. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin (,, ...). Every observed subatomic particle is either a boson or a fermion. Bosons are named after physicist Satyendra Nath Bose. Some bosons are elementary particles and occupy a special role in particle physics unlike that of fermions, which are sometimes described as the constituents of "ordinary matter". Some elementary bosons (for example, gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) gives rise to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents. Outside the realm of particle physics, superfluidity arises because composite bosons (bose particles), such as low temperature helium-4 atoms, follow Bose–E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goldstone Boson
In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes. These spinless bosons correspond to the spontaneously broken internal symmetry generators, and are characterized by the quantum numbers of these. They transform nonlinearly (shift) under the action of these generators, and can thus be excited out of the asymmetric vacuum by these generators. Thus, they can be thought of as the excitations of the field in the broken symmetry directions in group space—and are massless if the spontaneously brok ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]