Geology Applications Of Fourier Transform Infrared Spectroscopy
   HOME
*



picture info

Geology Applications Of Fourier Transform Infrared Spectroscopy
Fourier transform infrared spectroscopy (FTIR) is a spectroscopy, spectroscopic technique that has been used for analyzing the fundamental molecular structure of geological samples in recent decades. As in other infrared spectroscopy, the molecules in the sample are excited to a higher energy state due to the absorption of infrared (IR) radiation emitted from the IR source in the instrument, which results in Molecular vibration, vibrations of molecular bonds. The intrinsic physicochemical property of each particular molecule determines its corresponding IR absorbance peak, and therefore can provide characteristic fingerprints of functional groups (e.g. C-H, O-H, C=O, etc.). In geosciences research, FTIR is applied extensively in the following applications: * Analysing the trace amount of water content in Nominally anhydrous minerals (NAMs) * Measuring volatile inclusions in glass and minerals * Estimating the explosion potential in volcanic setting. * Analysing chemotaxonomy of ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kramers–Kronig Relations
The Kramers–Kronig relations are bidirectional mathematical relations, connecting the real and imaginary parts of any complex function that is analytic in the upper half-plane. The relations are often used to compute the real part from the imaginary part (or vice versa) of response functions in physical systems, because for stable systems, causality implies the condition of analyticity, and conversely, analyticity implies causality of the corresponding stable physical system. The relation is named in honor of Ralph Kronig and Hans Kramers. In mathematics, these relations are known by the names Sokhotski–Plemelj theorem and Hilbert transform. Formulation Let \chi(\omega) = \chi_1(\omega) + i \chi_2(\omega) be a complex function of the complex variable \omega , where \chi_1(\omega) and \chi_2(\omega) are real. Suppose this function is analytic in the closed upper half-plane of \omega and vanishes faster than 1/, \omega, as , \omega, \to \infty. Slightly weaker conditi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nucleation
In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of water is cooled (at atmospheric pressure) below 0°C, it will tend to freeze into ice, but volumes of water cooled only a few degrees below 0°C often stay completely free of ice for long periods (supercooling). At these conditions, nucleation of ice is either slow or does not occur at all. However, at lower temperatures nucleation is fast, and ice crystals appear after little or no delay. Nucleation is a common mechanism which generates first-order phase transitions, and it is the start of the process of forming a new thermodynamic phase. In contrast, new phases at continuous phase transitions start to form immedi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schematic Diagram Of Water Concentration Profile
A schematic, or schematic diagram, is a designed representation of the elements of a system using abstract, graphic symbols rather than realistic pictures. A schematic usually omits all details that are not relevant to the key information the schematic is intended to convey, and may include oversimplified elements in order to make this essential meaning easier to grasp, as well as additional organization of the information. For example, a subway map intended for passengers may represent a subway station with a dot. The dot is not intended to resemble the actual station at all but aims to give the viewer information without unnecessary visual clutter. A schematic diagram of a chemical process uses symbols in place of detailed representations of the vessels, piping, valves, pumps, and other equipment that compose the system, thus emphasizing the functions of the individual elements and the interconnections among them and suppresses their physical details. In an electronic circuit d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchrotron Light Source
A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam which are needed to convert high energy electrons into photons. The major applications of synchrotron light are in condensed matter physics, materials science, biology and medicine. A large fraction of experiments using synchrotron light involve probing the structure of matter from the sub-nanometer level of electronic structure to the micrometer and millimeter level important in medical imaging. An ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Inclusions
image:Inclumed.gif, 250px, Trapped in a time capsule the same size as the diameter of a human hair, the ore-forming liquid in this inclusion was so hot and contained so much dissolved solids that when it cooled, crystals of halite, sylvite, gypsum, and hematite formed. As the samples cooled, the fluid shrank more than the surrounding mineral, and created a vapor bubble. Source: USGS A fluid inclusion is a microscopic bubble of liquid and/or gas that is trapped within a crystal. As minerals often form from a liquid or aqueous medium, tiny bubbles of that liquid can become trapped within the crystal, or along healed crystal fractures. These small inclusions range in size from 0.01 mm to 1 mm and are usually only visible in detail by microscopic study. These inclusions occur in a wide variety of environments. For example, they are found within cementing minerals of sedimentary rocks, in gangue minerals such as quartz or calcite in hydrothermal circulation deposits, in fossil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Melt Inclusions
A melt inclusion is a small parcel or "blobs" of melt(s) that is entrapped by crystals growing in magma and eventually forming igneous rocks. In many respects it is analogous to a fluid inclusion within magmatic hydrothermal systems. Melt inclusions tend to be microscopic in size and can be analyzed for volatile contents that are used to interpret trapping pressures of the melt at depth. Characteristics Melt inclusions are generally small - most are less than 80 micrometres across (a micrometre is one thousandth of a millimeter, or about 0.00004 inches). They may contain a number of different constituents, including glass (which represents melt that has been quenched by rapid cooling), small crystals and a separate vapour-rich bubble. They occur in the crystals that can be found in igneous rocks, such as for example quartz, feldspar, olivine, pyroxene, nepheline, magnetite, perovskite and apatite. Melt inclusions can be found in both volcanic and plutonic rocks. In addition, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Melt Inclusions 2
Melt may refer to: Science and technology * Melting, in physics, the process of heating a solid substance to a liquid * Melt (manufacturing), the semi-liquid material used in steelmaking and glassblowing * Melt (geology), magma ** Melt inclusions, a feature of igneous rock * Meltwater, water released from the thawing of snow and ice * MLT framework, a software test tool for the Media Lovin' Toolkit * Melt, one of the former names for the American social media app Gas (app), Gas. Music * Melt! Festival, an annual music festival at Ferropolis in Germany Albums * Melt (Straitjacket Fits album), ''Melt'' (Straitjacket Fits album), a 1990 album by Straitjacket Fits * Melt (Rascal Flatts album), ''Melt'' (Rascal Flatts album), a 2002 album by Rascal Flatts * ''Melt'', a 2018 extended play by Shaed, featuring the song "Trampoline (Shaed song), Trampoline" * Melt (Peter Gabriel album), ''Melt'' (Peter Gabriel album), an alternative name of the third self-titled Peter Gabriel album, from 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Melting
Partial melting occurs when only a portion of a solid is melted. For mixed substances, such as a rock containing several different minerals or a mineral that displays solid solution, this melt can be different from the bulk composition of the solid. Partial melting occurs where the solidus and liquidus temperatures are different. For single minerals this can happen when they exhibit solid solution, for example in olivines between iron and magnesium. In rocks made up of several different minerals, some will melt at lower temperatures than others. Partial melting of the mantle Melting in the mantle requires one of three possible events to occur: an increase in temperature, a decrease in pressure, or the addition of volatiles to the system (a change in composition). Temperature In the case of raising the temperature, mantle melting will only occur if the mantle is heated past the normal geotherm. It is believed that heat flux from the core and lower mantle is responsible for incr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mantle (geology)
A mantle is a layer inside a planetary body bounded below by a Planetary core, core and above by a Crust (geology), crust. Mantles are made of Rock (geology), rock or Volatiles, ices, and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone planetary differentiation, differentiation by density. All Terrestrial planet, terrestrial planets (including Earth), a number of Asteroid, asteroids, and some planetary Natural satellite, moons have mantles. Earth's mantle The Earth's mantle is a layer of Silicate minerals, silicate rock between the Crust (geology), crust and the Earth's outer core, outer core. Its mass of 4.01 × 1024 kg is 67% the mass of the Earth. It has a thickness of making up about 84% of Earth's volume. It is predominantly solid, but in Geologic time scale, geological time it behaves as a Viscosity, viscous fluid. Partial melting of the mantle at mid-ocean ridges produ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beer–Lambert Law
The Beer–Lambert law, also known as Beer's law, the Lambert–Beer law, or the Beer–Lambert–Bouguer law relates the attenuation of light to the properties of the material through which the light is travelling. The law is commonly applied to chemical analysis measurements and used in understanding attenuation in physical optics, for photons, neutrons, or rarefied gases. In mathematical physics, this law arises as a solution of the BGK equation. History The law was discovered by Pierre Bouguer before 1729, while looking at red wine, during a brief vacation in Alentejo, Portugal. It is often attributed to Johann Heinrich Lambert, who cited Bouguer's ''Essai d'optique sur la gradation de la lumière'' (Claude Jombert, Paris, 1729) – and even quoted from it – in his ''Photometria'' in 1760. Lambert's law stated that the loss of light intensity when it propagates in a medium is directly proportional to intensity and path length. Much later, the German scientist Augus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotational–vibrational Spectroscopy
Rotational–vibrational spectroscopy is a branch of molecular spectroscopy concerned with infrared and Raman spectra of molecules in the gas phase. Transitions involving changes in both vibrational and rotational states can be abbreviated as rovibrational (or ro-vibrational) transitions. When such transitions emit or absorb photons (electromagnetic radiation), the frequency is proportional to the difference in energy levels and can be detected by certain kinds of spectroscopy. Since changes in rotational energy levels are typically much smaller than changes in vibrational energy levels, changes in rotational state are said to give fine structure to the vibrational spectrum. For a given vibrational transition, the same theoretical treatment as for pure rotational spectroscopy gives the rotational quantum numbers, energy levels, and selection rules. In linear and spherical top molecules, rotational lines are found as simple progressions at both higher and lower frequencies relat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]