Geographic Routing
   HOME
*





Geographic Routing
Geographic routing (also called georouting or position-based routing) is a routing principle that relies on geographic position information. It is mainly proposed for wireless networks and based on the idea that the source sends a message to the geographic location of the destination instead of using the network address. In the area of packet radio networks, the idea of using position information for routing was first proposed in the 1980s for interconnection networks. Geographic routing requires that each node can determine its own location and that the source is aware of the location of the destination. With this information, a message can be routed to the destination without knowledge of the network topology or a prior route discovery. Approaches There are various approaches, such as single-path, multi-path and flooding-based strategies (see for a survey). Most single-path strategies rely on two techniques: greedy forwarding and face routing. Greedy forwarding tries to bring the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Routing
Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet. In packet switching networks, routing is the higher-level decision making that directs network packets from their source toward their destination through intermediate network nodes by specific packet forwarding mechanisms. Packet forwarding is the transit of network packets from one network interface to another. Intermediate nodes are typically network hardware devices such as routers, gateways, firewalls, or switches. General-purpose computers also forward packets and perform routing, although they have no specially optimized hardware for the task. The routing process usually directs forwarding on the basis of routing tables. Routing tables maintain a record of the routes to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geographic Position
The geographic coordinate system (GCS) is a spherical or ellipsoidal coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface. A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid), as different datums will yield different latitude and longitude values for the same location. History The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene, who composed his now-lost ''Geography'' at the Library of Alexandria in the 3rd century BC. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wireless Network
A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking is a method by which homes, telecommunications networks and business installations avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure. Examples of wireless networks include cell phone networks, wireless local area networks (WLANs), wireless sensor networks, satellite communication networks, and terrestrial microwave networks. History Wireless networks The first professional wireless network was developed under the brand ALOHAnet in 1969 at the University of Hawaii and became operational in June 1971. The first commercial wireless network was the WaveLAN product family, developed by NCR i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Network Address
A network address is an identifier for a node or host on a telecommunications network. Network addresses are designed to be unique identifiers across the network, although some networks allow for local, private addresses, or locally administered addresses that may not be unique. Special network addresses are allocated as broadcast or multicast addresses. These too are not unique. In some cases, network hosts may have more than one network address. For example, each network interface controller may be uniquely identified. Further, because protocols are frequently layered, more than one protocol's network address can occur in any particular network interface or node and more than one type of network address may be used in any one network. Network addresses can be flat addresses which contain no information about the node's location in the network (such as a MAC address), or may contain structure or hierarchical information for the routing (such as an IP address). Examples Exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Packet Radio
In digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link. Packet radio can be differentiated from other digital radio switching schemes by the following attributes: * Transmitted data is broken into packets, each of which contains a destination (and typically the source) address * A transmitted message may be broken into a sequence of packets before transmission, which are then re-assembled into the original message upon reception * Packets for multiple destinations can be transmitted on the same radio link in an asynchronous fashion * A packet may be addressed to all possible recipients rather than a specific one (broadcast) * A packet may be stored and subsequently forwarded towards its destination by a network node This is very similar to how packets of data ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Node (networking)
In telecommunications networks, a node (, ‘knot’) is either a redistribution point or a communication endpoint. The definition of a node depends on the network and protocol layer referred to. A physical network node is an electronic device that is attached to a network, and is capable of creating, receiving, or transmitting information over a communication channel. A passive distribution point such as a distribution frame or patch panel is consequently not a node. Computer networks In data communication, a physical network node may either be data communication equipment (DCE) such as a modem, hub, bridge or switch; or data terminal equipment (DTE) such as a digital telephone handset, a printer or a host computer. If the network in question is a local area network (LAN) or wide area network (WAN), every LAN or WAN node that participates on the data link layer must have a network address, typically one for each network interface controller it possesses. Examples are compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Network Topology
Network topology is the arrangement of the elements ( links, nodes, etc.) of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks. Network topology is the topological structure of a network and may be depicted physically or logically. It is an application of graph theory wherein communicating devices are modeled as nodes and the connections between the devices are modeled as links or lines between the nodes. Physical topology is the placement of the various components of a network (e.g., device location and cable installation), while logical topology illustrates how data flows within a network. Distances between nodes, physical interconnections, transmission rates, or signal types may differ between two different networks, yet their logical topologies may be identical. A network’s physical topology is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flooding Algorithm
{{Short description, Class of algorithms A flooding algorithm is an algorithm for distributing material to every part of a graph. The name derives from the concept of inundation by a flood. Flooding algorithms are used in computer networking and graphics. Flooding algorithms are also useful for solving many mathematical problems, including maze problems and many problems in graph theory. Different flooding algorithms can be applied for different problems, and run with different time complexities. For example, the flood fill algorithm is a simple but relatively robust algorithm that works for intricate geometries and can determine which part of the (target) area that is connected to a given (source) node in a multi-dimensional array, and is trivially generalized to arbitrary graph structures. If there instead are several source nodes, there are no obstructions in the geometry represented in the multi-dimensional array, and one wishes to segment the area based on which of the source ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Greedy Embedding
In distributed computing and geometric graph theory, greedy embedding is a process of assigning coordinates to the nodes of a telecommunications network in order to allow greedy geographic routing to be used to route messages within the network. Although greedy embedding has been proposed for use in wireless sensor networks, in which the nodes already have positions in physical space, these existing positions may differ from the positions given to them by greedy embedding, which may in some cases be points in a virtual space of a higher dimension, or in a non-Euclidean geometry. In this sense, greedy embedding may be viewed as a form of graph drawing, in which an abstract graph (the communications network) is embedded into a geometric space. The idea of performing geographic routing using coordinates in a virtual space, instead of using physical coordinates, is due to Rao et al. Subsequent developments have shown that every network has a greedy embedding with succinct vertex coordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Ad Hoc Routing Protocols
An ad hoc routing protocol is a convention, or standard, that controls how nodes decide which way to route packets between computing devices in a mobile ad hoc network. In ad hoc networks, nodes are not familiar with the topology of their networks. Instead, they have to discover it: typically, a new node announces its presence and listens for announcements broadcast by its neighbors. Each node learns about others nearby and how to reach them, and may announce that it too can reach them. Note that in a wider sense, ad hoc protocol can also be used literally, to mean an improvised and often impromptu protocol established for a specific purpose. The following is a list of some ad hoc network routing protocols. Table-driven (proactive) routing This type of protocols maintains fresh lists of destinations and their routes by periodically distributing routing tables throughout the network. The main disadvantages of such algorithms are: # Respective amount of data for maintenance. # S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Backpressure Routing
In queueing theory, a discipline within the mathematical theory of probability, the backpressure routing algorithm is a method for directing traffic around a queueing network that achieves maximum network throughput, which is established using concepts of Lyapunov drift. Backpressure routing considers the situation where each job can visit multiple service nodes in the network. It is an extension of max-weight scheduling where each job visits only a single service node. Introduction Backpressure routing is an algorithm for dynamically routing traffic over a multi-hop network by using congestion gradients. The algorithm can be applied to wireless communication networks, including sensor networks, mobile ad hoc networks ( MANETS), and heterogeneous networks with wireless and wireline components.L. Tassiulas and A. Ephremides, "Stability Properties of Constrained Queueing Systems and Scheduling Policies for Maximum Throughput in Multihop Radio Networks, ''IEEE Transactions on Aut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Routing Protocols
A routing protocol specifies how routers communicate with each other to distribute information that enables them to select routes between nodes on a computer network. Routers perform the traffic directing functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled connections and components and route data around obstructions is what gives the Internet its fault tolerance and high availability. The specific characteristics of routing protocols include the manner in which they avoid rou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]