Generalized Pencil-of-function Method
   HOME



picture info

Generalized Pencil-of-function Method
Generalized pencil-of-function method (GPOF), also known as matrix pencil method, is a signal processing technique for estimating a signal or extracting information with complex exponentials. Being similar to Prony and original pencil-of-function methods, it is generally preferred to those for its robustness and computational efficiency. The method was originally developed by Yingbo Hua and Tapan Sarkar for estimating the behaviour of electromagnetic systems by its transient response, building on Sarkar's past work on the original pencil-of-function method. The method has a plethora of applications in electrical engineering, particularly related to problems in computational electromagnetics, microwave engineering and antenna theory. Method Mathematical basis A transient electromagnetic signal can be represented as: :y(t)=x(t)+n(t) \approx \sum_^R_i e^ + n(t); 0 \leq t \leq T, where : y(t) is the observed time-domain signal, : n(t) is the signal noise, : x(t) is the actual s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Matrix Pencil
In linear algebra, a matrix pencil is a matrix-valued polynomial function defined on a field K, usually the real or complex numbers. Definition Let K be a field (typically, K \in \; the definition can be generalized to rngs), let \ell \ge 0 be a non-negative integer, let n > 0 be a positive integer, and let A_0, A_1, \dots, A_\ell be n\times n matrices (i. e. A_i \in \mathrm(K, n \times n) for all i = 0, \dots, \ell). Then the matrix pencil defined by A_0, \dots, A_\ell is the matrix-valued function L \colon K \to \mathrm(K, n \times n) defined by :L(\lambda) = \sum_^\ell \lambda^i A_i. The ''degree'' of the matrix pencil is defined as the largest integer 0 \le k \le \ell such that A_k \ne 0, the n \times n zero matrix over K. Linear matrix pencils A particular case is a linear matrix pencil L(\lambda) = A - \lambda B (where B \ne 0). We denote it briefly with the notation (A, B), and note that using the more general notation, A_0 = A and A_1 = -B (not B). Proper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Finite Impulse Response
In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of ''finite'' duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely (usually decaying). The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-order discrete-time FIR filter lasts exactly N+1 samples (from first nonzero element through last nonzero element) before it then settles to zero. FIR filters can be discrete-time or continuous-time, and digital or analog. Definition For a causal discrete-time FIR filter of order ''N'', each value of the output sequence is a weighted sum of the most recent input values: :\begin y &= b_0 x + b_1 x -1+ \cdots + b_N x -N\\ &= \sum_^N b_i\cdot x -i \end where: * x /math> is the input signal, * y /math> is the outpu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Signal-to-noise Ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR is an important parameter that affects the performance and quality of systems that process or transmit signals, such as communication systems, audio systems, radar systems, imaging systems, and data acquisition systems. A high SNR means that the signal is clear and easy to detect or interpret, while a low SNR means that the signal is corrupted or obscured by noise and may be difficult to distinguish or recover. SNR can be improved by various methods, such as increasing the signal strength, reducing the noise level, filtering out unwanted noise, or using error correction techniques. SNR also determines the maximum possible amount of data that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Significant Figures
Significant figures, also referred to as significant digits, are specific digits within a number that is written in positional notation that carry both reliability and necessity in conveying a particular quantity. When presenting the outcome of a measurement (such as length, pressure, volume, or mass), if the number of digits exceeds what the measurement instrument can resolve, only the digits that are determined by the resolution are dependable and therefore considered significant. For instance, if a length measurement yields 114.8 mm, using a ruler with the smallest interval between marks at 1 mm, the first three digits (1, 1, and 4, representing 114 mm) are certain and constitute significant figures. Further, digits that are uncertain yet meaningful are also included in the significant figures. In this example, the last digit (8, contributing 0.8 mm) is likewise considered significant despite its uncertainty. Therefore, this measurement contains ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Conjugate Transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate of a+ib being a-ib, for real numbers a and b). There are several notations, such as \mathbf^\mathrm or \mathbf^*, \mathbf', or (often in physics) \mathbf^. For real matrices, the conjugate transpose is just the transpose, \mathbf^\mathrm = \mathbf^\operatorname. Definition The conjugate transpose of an m \times n matrix \mathbf is formally defined by where the subscript ij denotes the (i,j)-th entry (matrix element), for 1 \le i \le n and 1 \le j \le m, and the overbar denotes a scalar complex conjugate. This definition can also be written as :\mathbf^\mathrm = \left(\overline\right)^\operatorname = \overline where \mathbf^\operatorname denotes the transpose and \overline denotes the matrix with complex conjugated entries. Other na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Singular Value
In mathematics, in particular functional analysis, the singular values of a compact operator T: X \rightarrow Y acting between Hilbert spaces X and Y, are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator T^*T (where T^* denotes the adjoint of T). The singular values are non-negative real numbers, usually listed in decreasing order (''σ''1(''T''), ''σ''2(''T''), …). The largest singular value ''σ''1(''T'') is equal to the operator norm of ''T'' (see Min-max theorem). If ''T'' acts on Euclidean space \Reals ^n, there is a simple geometric interpretation for the singular values: Consider the image by T of the unit sphere; this is an ellipsoid, and the lengths of its semi-axes are the singular values of T (the figure provides an example in \Reals^2). The singular values are the absolute values of the eigenvalues of a normal matrix ''A'', because the spectral theorem can be applied to obtain unitary diagonalization of A as A = U\Lambd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Eigenvalues And Eigenvectors
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Unitary Matrix
In linear algebra, an invertible complex square matrix is unitary if its matrix inverse equals its conjugate transpose , that is, if U^* U = UU^* = I, where is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (), so the equation above is written U^\dagger U = UU^\dagger = I. A complex matrix is special unitary if it is unitary and its matrix determinant equals . For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes. Properties For any unitary matrix of finite size, the following hold: * Given two complex vectors and , multiplication by preserves their inner product; that is, . * is normal (U^* U = UU^*). * is diagonalizable; that is, is unitarily similar to a diagonal matrix, as a consequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Digital Filter
In signal processing, a digital filter is a system that performs mathematical operations on a Sampling (signal processing), sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is typically an electronic circuit operating on continuous-time analog signals. A digital filter system usually consists of an analog-to-digital converter (ADC) to sample the input signal, followed by a microprocessor and some peripheral components such as memory to store data and filter coefficients etc. Program Instructions (software) running on the microprocessor implement the digital filter by performing the necessary mathematical operations on the numbers received from the ADC. In some high performance applications, an FPGA or ASIC is used instead of a general purpose microprocessor, or a specialized digital signal processor (DSP) with specific paralleled architecture for expedi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Singular Value Decomposition
In linear algebra, the singular value decomposition (SVD) is a Matrix decomposition, factorization of a real number, real or complex number, complex matrix (mathematics), matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition#Matrix polar decomposition, polar decomposition. Specifically, the singular value decomposition of an m \times n complex matrix is a factorization of the form \mathbf = \mathbf, where is an complex unitary matrix, \mathbf \Sigma is an m \times n rectangular diagonal matrix with non-negative real numbers on the diagonal, is an n \times n complex unitary matrix, and \mathbf V^* is the conjugate transpose of . Such decomposition always exists for any complex matrix. If is real, then and can be guaranteed to be real orthogonal matrix, orthogonal matrices; in such contexts, the SVD ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Moore–Penrose Inverse
In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse of integral operators in 1903. The terms ''pseudoinverse'' and ''generalized inverse'' are sometimes used as synonyms for the Moore–Penrose inverse of a matrix, but sometimes applied to other elements of algebraic structures which share some but not all properties expected for an inverse element. A common use of the pseudoinverse is to compute a "best fit" ( least squares) approximate solution to a system of linear equations that lacks an exact solution (see below under § Applications). Another use is to find the minimum ( Euclidean) norm solution to a system of linear equations with multiple solutions. The pseu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]