Generalized Hypergeometric Function
   HOME
*





Generalized Hypergeometric Function
In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by ''n'' is a rational function of ''n''. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series. Generalized hypergeometric functions include the (Gaussian) hypergeometric function and the confluent hypergeometric function as special cases, which in turn have many particular special functions as special cases, such as elementary functions, Bessel functions, and the classical orthogonal polynomials. Notation A hypergeometric series is formally defined as a power series :\beta_0 + \beta_1 z + \beta_2 z^2 + \dots = \sum_ \beta_n z^n in which the ratio of successive coefficients is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plot Of The Generalized Hypergeometric Function PFq(a B Z) With A=(2,4,6,8) And B=(2,3,5,7,11) In The Complex Plane From -2-2i To 2+2i Created With Mathematica 13
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the story of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' (film), a 1973 French-Italian film * ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a ship's on-board sensors * Plot plan, a type of drawing which shows existing and proposed conditions for a given area Land * Plot (land), a piece of land used for building on ** Burial plot, a piece of land a person is buried in * Quadrat, a de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pochhammer Symbol
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial :\begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) \,. \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, (A reprint of the 1950 edition by Chelsea Publishing Co.) rising sequential product, or upper factorial) is defined as :\begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) \,. \end The value of each is taken to be 1 (an empty product) when . These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation , where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used with yet another meaning, namely to d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Egorychev Method
The Egorychev method is a collection of techniques introduced by Georgy Egorychev for finding identities among sums of binomial coefficients, Stirling numbers, Bernoulli numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers. The method relies on two observations. First, many identities can be proved by extracting coefficients of generating functions. Second, many generating functions are convergent power series, and coefficient extraction can be done using the Cauchy residue theorem (usually this is done by integrating over a small circular contour enclosing the origin). The sought-for identity can now be found using manipulations of integrals. Some of these manipulations are not clear from the generating function perspective. For instance, the integrand is usually a rational function, and the sum of the residues of a rational function is zero, yielding a new expression for the original sum. The residue at infinity is particularly important in these consid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gauss's Continued Fraction
In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions. History Lambert published several examples of continued fractions in this form in 1768, and both Euler and Lagrange investigated similar constructions, but it was Carl Friedrich Gauss who utilized the algebra described in the next section to deduce the general form of this continued fraction, in 1813. Although Gauss gave the form of this continued fraction, he did not give a proof of its convergence properties. Bernhard Riemann and L.W. Thomé obtained partial results, but the final word on the region in which this continued fraction converges was not given until 1901, by Edward Burr Van Vleck. Derivation Let f_0, f_1, f_2, \dots be a seque ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continued Fraction
In mathematics, a continued fraction is an expression (mathematics), expression obtained through an iterative process of representing a number as the sum of its integer part and the multiplicative inverse, reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression (mathematics), infinite expression. In either case, all integers in the sequence, other than the first, must be positive number, positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or function (mathematics), functions are used in place of one or more of the numerat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ratio Test
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series :\sum_^\infty a_n, where each term is a real or complex number and is nonzero when is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The test The usual form of the test makes use of the limit The ratio test states that: * if ''L'' 1 then the series diverges; * if ''L'' = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case. It is possible to make the ratio test applicable to certain cases where the limit ''L'' fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when ''L'' = 1. More specifically, let :R = \lim\sup \left, \frac\ :r = \lim\inf \left, \frac\. Then the ratio test states that: * if ''R'' 1, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilateral Hypergeometric Series
In mathematics, a bilateral hypergeometric series is a series Σ''a''''n'' summed over ''all'' integers ''n'', and such that the ratio :''a''''n''/''a''''n''+1 of two terms is a rational function of ''n''. The definition of the generalized hypergeometric series is similar, except that the terms with negative ''n'' must vanish; the bilateral series will in general have infinite numbers of non-zero terms for both positive and negative ''n''. The bilateral hypergeometric series fails to converge for most rational functions, though it can be analytically continued to a function defined for most rational functions. There are several summation formulas giving its values for special values where it does converge. Definition The bilateral hypergeometric series ''p''H''p'' is defined by :_pH_p(a_1,\ldots,a_p;b_1,\ldots,b_p;z)= _pH_p\left(\begina_1&\ldots&a_p\\b_1&\ldots&b_p\\ \end;z\right)= \sum_^\infty \fracz^n where :(a)_n=a(a+1)(a+2)\cdots(a+n-1)\, is the rising factorial or Pochha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (''M'', ''g'') is said to be symmetric if and only if, for each point ''p'' of ''M'', there exists an isometry of ''M'' fixing ''p'' and acting on the tangent space T_pM as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetries about t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zonal Spherical Function
In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group ''G'' with compact subgroup ''K'' (often a maximal compact subgroup) that arises as the matrix coefficient of a ''K''-invariant vector in an irreducible representation of ''G''. The key examples are the matrix coefficients of the '' spherical principal series'', the irreducible representations appearing in the decomposition of the unitary representation of ''G'' on ''L''2(''G''/''K''). In this case the commutant of ''G'' is generated by the algebra of biinvariant functions on ''G'' with respect to ''K'' acting by right convolution. It is commutative if in addition ''G''/''K'' is a symmetric space, for example when ''G'' is a connected semisimple Lie group with finite centre and ''K'' is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Q-analog
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.Exton, H. (1983), ''q-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, , , ''q''-analogues are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basic Hypergeometric Series
In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x''''n'' is called hypergeometric if the ratio of successive terms ''x''''n''+1/''x''''n'' is a rational function of ''n''. If the ratio of successive terms is a rational function of ''q''''n'', then the series is called a basic hypergeometric series. The number ''q'' is called the base. The basic hypergeometric series _2\phi_1(q^,q^;q^;q,x) was first considered by . It becomes the hypergeometric series F(\alpha,\beta;\gamma;x) in the limit when base q =1. Definition There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as :\;_\phi_k \left begin a_1 & a_2 & \ldots & a_ \\ b_1 & b_2 & \ldots & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymptotic Expansion
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function. The most common type of asymptotic expansion is a power series in either positive or negative powers. Methods of generating such expansions include the Euler–Maclaurin summation formula and integral transforms such as the Laplace and Mellin transforms. Repeated integration by parts will often lead to an asymptotic expansion. Since a '' convergent'' Taylor series fits the definition of asymptotic expansion as well, the phrase "asymptotic series" usually implies a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]