Generalized Maps
   HOME
*





Generalized Maps
In mathematics, a generalized map is a topological model which allows one to represent and to handle subdivided objects. This model was defined starting from combinatorial maps in order to represent non-orientable and open subdivisions, which is not possible with combinatorial maps. The main advantage of generalized map is the homogeneity of one-to-one mappings in any dimensions, which simplifies definitions and algorithms comparing to combinatorial maps. For this reason, generalized maps are sometimes used instead of combinatorial maps, even to represent orientable closed partitions. Like combinatorial maps, generalized maps are used as efficient data structure in image representation and processing, in geometrical modeling, they are related to simplicial set and to combinatorial topology, and this is a boundary representation model (B-rep or BREP), i.e. it represents object by its boundaries. General definition The definition of generalized map in any dimension is given in and: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorial Map
A combinatorial map is a combinatorial representation of a graph on an orientable surface. A combinatorial map may also be called a combinatorial embedding, a rotation system, an orientable ribbon graph, a fat graph, or a cyclic graph. More generally, an n-dimensional combinatorial map is a combinatorial representation of a graph on an n-dimensional orientable manifold. Combinatorial maps are used as efficient data structures in image representation and processing, in geometrical modeling. This model is related to simplicial complexes and to combinatorial topology. A combinatorial map is a boundary representation model; it represents object by its boundaries. History The concept of a combinatorial map was introduced informally by J. Edmonds for polyhedral surfaces which are planar graphs. It was given its first definite formal expression under the name "Constellations" by A. Jacques but the concept was already extensively used under the name "rotation" by Gerhard Ringel and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Set
In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorial Topology
In mathematics, combinatorial topology was an older name for algebraic topology, dating from the time when topological invariants of spaces (for example the Betti numbers) were regarded as derived from combinatorial decompositions of spaces, such as decomposition into simplicial complexes. After the proof of the simplicial approximation theorem this approach provided rigour. The change of name reflected the move to organise topological classes such as cycles-modulo-boundaries explicitly into abelian groups. This point of view is often attributed to Emmy Noether, and so the change of title may reflect her influence. The transition is also attributed to the work of Heinz Hopf, who was influenced by Noether, and to Leopold Vietoris and Walther Mayer, who independently defined homology. A fairly precise date can be supplied in the internal notes of the Bourbaki group. While topology was still ''combinatorial'' in 1942, it had become ''algebraic'' by 1944. This corresponds also to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boundary Representation
In solid modeling and computer-aided design, boundary representation (often abbreviated B-rep or BREP) is a method for representing a 3D shape by defining the limits of its volume. A solid is represented as a collection of connected surface elements, which define the boundary between interior and exterior points. Overview A boundary representation of a model comprises topological components (faces, edges and vertices) and the connections between them, along with geometric definitions for those components (surfaces, curves and points, respectively). A face is a bounded portion of a surface; an edge is a bounded piece of a curve and a vertex lies at a point. Other elements are the ''shell'' (a set of connected faces), the ''loop'' (a circuit of edges bounding a face) and ''loop-edge links'' (also known as ''winged edge links'' or ''half-edges'') which are used to create the edge circuits. Vs Constructive Solid Geometry Compared to the constructive solid geometry (CSG) repr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Involution (mathematics)
In mathematics, an involution, involutory function, or self-inverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x \mapsto -x), reciprocation (x \mapsto 1/x), and complex conjugation (z \mapsto \bar z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions ''f'' and ''g'' is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: :a_0 = a_1 = 1 and a_n = a_ + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boundary Representation
In solid modeling and computer-aided design, boundary representation (often abbreviated B-rep or BREP) is a method for representing a 3D shape by defining the limits of its volume. A solid is represented as a collection of connected surface elements, which define the boundary between interior and exterior points. Overview A boundary representation of a model comprises topological components (faces, edges and vertices) and the connections between them, along with geometric definitions for those components (surfaces, curves and points, respectively). A face is a bounded portion of a surface; an edge is a bounded piece of a curve and a vertex lies at a point. Other elements are the ''shell'' (a set of connected faces), the ''loop'' (a circuit of edges bounding a face) and ''loop-edge links'' (also known as ''winged edge links'' or ''half-edges'') which are used to create the edge circuits. Vs Constructive Solid Geometry Compared to the constructive solid geometry (CSG) repr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorial Map
A combinatorial map is a combinatorial representation of a graph on an orientable surface. A combinatorial map may also be called a combinatorial embedding, a rotation system, an orientable ribbon graph, a fat graph, or a cyclic graph. More generally, an n-dimensional combinatorial map is a combinatorial representation of a graph on an n-dimensional orientable manifold. Combinatorial maps are used as efficient data structures in image representation and processing, in geometrical modeling. This model is related to simplicial complexes and to combinatorial topology. A combinatorial map is a boundary representation model; it represents object by its boundaries. History The concept of a combinatorial map was introduced informally by J. Edmonds for polyhedral surfaces which are planar graphs. It was given its first definite formal expression under the name "Constellations" by A. Jacques but the concept was already extensively used under the name "rotation" by Gerhard Ringel and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quad-edge Data Structure
A quad-edge data structure is a computer representation of the topology of a two-dimensional or three-dimensional map, that is, a graph drawn on a (closed) surface. It was first described by Jorge Stolfi and Leonidas J. Guibas. It is a variant of the earlier winged edge data structure. Overview The fundamental idea behind the quad-edge structure is the recognition that a single edge, in a closed polygonal mesh topology, sits between exactly two faces and exactly two vertices. The Quad-Edge Data Structure The quad-edge data structure represents an edge, along with the edges it is connected to around the adjacent vertices and faces to encode the topology of the graph. An example implementation of the quad-edge data-type is as follows typedef struct quadedge; typedef struct quadedge_ref; Each quad-edge contains four references to adjacent quad-edges. Each of the four references points to the next edge counter-clockwise around either a vertex or a face. Each of these reference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rotation System
In combinatorial mathematics, rotation systems (also called combinatorial embeddings or combinatorial maps) encode embeddings of graphs onto orientable surfaces by describing the circular ordering of a graph's edges around each vertex. A more formal definition of a rotation system involves pairs of permutations; such a pair is sufficient to determine a multigraph, a surface, and a 2-cell embedding of the multigraph onto the surface. Every rotation scheme defines a unique 2-cell embedding of a connected multigraph on a closed oriented surface (up to orientation-preserving topological equivalence). Conversely, any embedding of a connected multigraph ''G'' on an oriented closed surface defines a unique rotation system having ''G'' as its underlying multigraph. This fundamental equivalence between rotation systems and 2-cell-embeddings was first settled in a dual form by Lothar Heffter in the 1890s and extensively used by Ringel during the 1950s. Independently, Edmonds gave the pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simplicial Set
In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Winged Edge
In computer graphics, the winged edge data structure is a way to represent polygon meshes in computer memory. It is a type of boundary representation and describes both the geometry and topology of a model. Three types of records are used: vertex records, edge records, and face records. Given a reference to an edge record, one can answer several types of adjacency queries (queries about neighboring edges, vertices and faces) in constant time. This kind of adjacency information is useful for algorithms such as subdivision surface. Features The winged edge data structure explicitly describes the geometry and topology of faces, edges, and vertices when three or more surfaces come together and meet at a common edge. The ordering is such that the surfaces are ordered counter-clockwise with respect to the innate orientation of the intersection edge. Moreover the representation allows numerically unstable situations like that depicted below. The winged edge data structure allo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]