GIT Quotient
   HOME
*





GIT Quotient
In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme X = \operatorname A with an action by a group scheme ''G'' is the affine scheme \operatorname(A^G), the prime spectrum of the ring of invariants of ''A'', and is denoted by X /\!/ G. A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of \operatorname, one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has :G / H = G /\!/ H = \operatorname\!\big(k H\big) for an algebraic group ''G'' over a field ''k'' and closed subgroup ''H''. If ''X'' is a complex smooth projective variety and if ''G'' is a reductive co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Compact Subgroup
In mathematics, a maximal compact subgroup ''K'' of a topological group ''G'' is a subgroup ''K'' that is a compact space, in the subspace topology, and maximal amongst such subgroups. Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are ''not'' in general unique, but are unique up to conjugation – they are essentially unique. Example An example would be the subgroup O(2), the orthogonal group, inside the general linear group GL(2, R). A related example is the circle group SO(2) inside SL(2, R). Evidently SO(2) inside GL(2, R) is compact and not maximal. The non-uniqueness of these examples can be seen as any inner product has an associated orthogonal group, and the essential uniqueness corresponds to the essential uniqueness of the inner product. Definition A maximal compact subgroup is a maximal subgroup amongst compact subgroups – a ''maximal (compact subgroup ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, ''The Daily Princetonian'', and later added book publishing to it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chow Quotient
In mathematics, particularly in the field of algebraic geometry, a Chow variety is an algebraic variety whose points correspond to effective algebraic cycles of fixed dimension and degree on a given projective space. More precisely, the Chow variety \operatorname(k,d,n) is the fine moduli variety parametrizing all effective algebraic cycles of dimension k-1 and degree d in \mathbb^. The Chow variety \operatorname(k,d,n) may be constructed via a Chow embedding into a sufficiently large projective space. This is a direct generalization of the construction of a Grassmannian variety via the Plücker embedding, as Grassmannians are the d=1 case of Chow varieties. Chow varieties are distinct from Chow groups, which are the abelian group of all algebraic cycles on a variety (not necessarily projective space) up to rational equivalence. Both are named for Wei-Liang Chow(周煒良), a pioneer in the study of algebraic cycles. Background on algebraic cycles If X is a closed subvariety of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Character Variety
In the mathematics of moduli theory, given an algebraic, reductive, Lie group G and a finitely generated group \pi, the G-''character variety of'' \pi is a space of equivalence classes of group homomorphisms from \pi to G: :\mathfrak(\pi,G)=\operatorname(\pi,G)/\!\sim \, . More precisely, G acts on \operatorname(\pi,G) by conjugation, and two homomorphisms are defined to be equivalent (denoted \sim) if and only if their orbit closures intersect. This is the weakest equivalence relation on the set of conjugation orbits, \operatorname(\pi,G)/G, that yields a Hausdorff space. Formulation Formally, and when the reductive group is defined over the complex numbers \Complex, the G-character variety is the spectrum of prime ideals of the ring of invariants (i.e., the affine GIT quotient). : \Complex operatorname(\pi,G)G . Here more generally one can consider algebraically closed fields of prime characteristic. In this generality, character varieties are only algebraic sets and ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Du Val Singularity
In algebraic geometry, a Du Val singularity, also called simple surface singularity, Kleinian singularity, or rational double point, is an isolated singularity of a complex surface which is modeled on a double branched cover of the plane, with minimal resolution obtained by replacing the singular point with a tree of smooth rational curves, with intersection pattern dual to a Dynkin diagram of A-D-E singularity type. They are the canonical singularities (or, equivalently, rational Gorenstein singularities) in dimension 2. They were studied by Patrick du Val and Felix Klein. The Du Val singularities also appear as quotients of \Complex^2 by a finite subgroup of SL2(\Complex); equivalently, a finite subgroup of SU(2), which are known as binary polyhedral groups. The rings of invariant polynomials of these finite group actions were computed by Klein, and are essentially the coordinate rings of the singularities; this is a classic result in invariant theory. Classification The p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conical Surface
In geometry, a (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the ''apex'' or ''vertex'' — and any point of some fixed space curve — the ''directrix'' — that does not contain the apex. Each of those lines is called a ''generatrix'' of the surface. Every conic surface is ruled and developable. In general, a conical surface consists of two congruent unbounded halves joined by the apex. Each half is called a nappe, and is the union of all the rays that start at the apex and pass through a point of some fixed space curve. (In some cases, however, the two nappes may intersect, or even coincide with the full surface.) Sometimes the term "conical surface" is used to mean just one nappe. If the directrix is a circle C, and the apex is located on the circle's ''axis'' (the line that contains the center of C and is perpendicular to its plane), one obtains the ''right circula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Morphism
In algebraic geometry, a sheaf of algebras on a ringed space ''X'' is a sheaf of commutative rings on ''X'' that is also a sheaf of \mathcal_X-modules. It is quasi-coherent if it is so as a module. When ''X'' is a scheme, just like a ring, one can take the global Spec of a quasi-coherent sheaf of algebras: this results in the contravariant functor \operatorname_X from the category of quasi-coherent (sheaves of) \mathcal_X-algebras on ''X'' to the category of schemes that are affine over ''X'' (defined below). Moreover, it is an equivalence: the quasi-inverse is given by sending an affine morphism f: Y \to X to f_* \mathcal_Y. Affine morphism A morphism of schemes f: X \to Y is called affine if Y has an open affine cover U_i's such that f^(U_i) are affine. For example, a finite morphism is affine. An affine morphism is quasi-compact and separated; in particular, the direct image of a quasi-coherent sheaf along an affine morphism is quasi-coherent. The base change of an affine m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Locally Factorial Scheme
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme ''S'' and a morphism an ''S''-morphism. !$@ A B C D E F G H I J K L M N O P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are ''invariant'', under the transformations from a given linear group. For example, if we consider the action of the special linear group ''SLn'' on the space of ''n'' by ''n'' matrices by left multiplication, then the determinant is an invariant of this action because the determinant of ''A X'' equals the determinant of ''X'', when ''A'' is in ''SLn''. Introduction Let G be a group, and V a finite-dimensional vector space over a field k (which in classical invariant theory was usually assumed to be the complex numbers). A representation of G in V is a group homomorphism \pi:G \to GL(V), which induces a group action of G on V. If k /math> is the space of polynomial functions on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linearized Line Bundle
In mathematics, given an action \sigma: G \times_S X \to X of a group scheme ''G'' on a scheme ''X'' over a base scheme ''S'', an equivariant sheaf ''F'' on ''X'' is a sheaf of \mathcal_X-modules together with the isomorphism of \mathcal_-modules :\phi: \sigma^* F \xrightarrow p_2^*F   that satisfies the cocycle condition: writing ''m'' for multiplication, :p_^* \phi \circ (1_G \times \sigma)^* \phi = (m \times 1_X)^* \phi. Notes on the definition On the stalk level, the cocycle condition says that the isomorphism F_ \simeq F_x is the same as the composition F_ \simeq F_ \simeq F_x; i.e., the associativity of the group action. The condition that the unit of the group acts as the identity is also a consequence: apply (e \times e \times 1)^*, e: S \to G to both sides to get (e \times 1)^* \phi \circ (e \times 1)^* \phi = (e \times 1)^* \phi and so (e \times 1)^* \phi is the identity. Note that \phi is an additional data; it is "a lift" of the action of ''G'' on ''X'' to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]