Gödel's Speed-up Theorem
   HOME
*





Gödel's Speed-up Theorem
In mathematics, Gödel's speed-up theorem, proved by , shows that there are theorems whose proofs can be drastically shortened by working in more powerful axiomatic systems. Kurt Gödel showed how to find explicit examples of statements in formal systems that are provable in that system but whose shortest proof is unimaginably long. For example, the statement: :"This statement cannot be proved in Peano arithmetic in fewer than a googolplex symbols" is provable in Peano arithmetic (PA) but the shortest proof has at least a googolplex symbols, by an argument similar to the proof of Gödel's first incompleteness theorem: If PA is consistent, then it cannot prove the statement in fewer than a googolplex symbols, because the existence of such a proof would itself be a theorem of PA, a contradiction. But simply enumerating all strings of length up to a googolplex and checking that each such string is not a proof (in PA) of the statement, yields a proof of the statement (which is neces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege. Gödel published his first incompleteness theorem in 1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ''The principles of arithmetic presented by a new method'' ( la, Arithmetice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Googolplex
A googolplex is the number 10, or equivalently, 10 or 1010,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 . Written out in ordinary decimal notation, it is 1 followed by 10100 zeroes; that is, a 1 followed by a googol of zeroes. History In 1920, Edward Kasner's nine-year-old nephew, Milton Sirotta, coined the term ''googol'', which is 10, and then proposed the further term ''googolplex'' to be "one, followed by writing zeroes until you get tired". Kasner decided to adopt a more formal definition because "different people get tired at different times and it would never do to have Carnera ea better mathematician than Dr. Einstein, simply because he had more endurance and could write for longer". It thus became standardized to 10(10100) = 1010100, due to the right-associativity of exponentiation. Size A typical book can be printed with 10 zeros (around 400 pages with 50 lines per page and 50 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harvey Friedman
__NOTOC__ Harvey Friedman (born 23 September 1948)Handbook of Philosophical Logic, , p. 38 is an American mathematical logician at Ohio State University in Columbus, Ohio. He has worked on reverse mathematics, a project intended to derive the axioms of mathematics from the theorems considered to be necessary. In recent years this has advanced to a study of Boolean relation theory, which attempts to justify large cardinal axioms by demonstrating their necessity for deriving certain propositions considered "concrete". Friedman earned his Ph.D. from the Massachusetts Institute of Technology in 1967, with a dissertation on ''Subsystems of Analysis''. His advisor was Gerald Sacks. Friedman received the Alan T. Waterman Award in 1984. He also assumed the title of Vising Scientist at IBM. He delivered the Tarski Lectures in 2007. In 1967, Friedman was listed in the ''Guinness Book of World Records'' for being the world's youngest professor when he taught at Stanford University at age ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Embedding
In topological graph theory, an embedding (also spelled imbedding) of a Graph (discrete mathematics), graph G on a surface (mathematics), surface \Sigma is a representation of G on \Sigma in which points of \Sigma are associated with graph theory, vertices and simple arcs (Homeomorphism, homeomorphic images of [0,1]) are associated with graph theory, edges in such a way that: * the endpoints of the arc associated with an edge e are the points associated with the end vertices of e, * no arcs include points associated with other vertices, * two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact space, compact, connected space, connected 2-manifold. Informally, an embedding of a graph into a surface is a drawing of the graph on the surface in such a way that its edges may intersect only at their endpoints. It is well known that any finite graph can be embedded in 3-dimensional Euclidean space \mathbb^3.. A planar graph is one that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kruskal's Theorem
In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. History The theorem was conjectured by Andrew Vázsonyi and proved by ; a short proof was given by . It has since become a prominent example in reverse mathematics as a statement that cannot be proved within ATR0 (a form of arithmetical transfinite recursion), and a finitary application of the theorem gives the existence of the fast-growing TREE function. In 2004, the result was generalized from trees to graphs as the Robertson–Seymour theorem, a result that has also proved important in reverse mathematics and leads to the even-faster-growing SSCG function. Statement The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree with a root, and given vertices , , call a successor of if the unique path from the root ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Second Order Arithmetic
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book ''Grundlagen der Mathematik''. The standard axiomatization of second-order arithmetic is denoted by Z2. Second-order arithmetic includes, but is significantly stronger than, its first-order counterpart Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows quantification over sets of natural numbers as well as numbers themselves. Because real numbers can be represented as (infinite) sets of natural numbers in well-known ways, and because second-order arithmetic allows quantification over such sets, it is possible to formalize the real numbers in second-order arithmetic. For this reason, secon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Blum's Speedup Theorem
In computational complexity theory, Blum's speedup theorem, first stated by Manuel Blum in 1967, is a fundamental theorem about the complexity of computable functions. Each computable function has an infinite number of different program representations in a given programming language. In the theory of algorithms one often strives to find a program with the smallest complexity for a given computable function and a given complexity measure (such a program could be called ''optimal''). Blum's speedup theorem shows that for any complexity measure, there exists a computable function, such that there is no optimal program computing it, because every program has a program of lower complexity. This also rules out the idea there is a way to assign to arbitrary functions ''their'' computational complexity, meaning the assignment to any ''f'' of the complexity of an optimal program for ''f''. This does of course not exclude the possibility of finding the complexity of an optimal program for c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Long Proofs
This is a list of unusually long mathematical proofs. Such proofs often use computational proof methods and may be considered non-surveyable. , the longest mathematical proof, measured by number of published journal pages, is the classification of finite simple groups with well over 10000 pages. There are several proofs that would be far longer than this if the details of the computer calculations they depend on were published in full. Long proofs The length of unusually long proofs has increased with time. As a rough rule of thumb, 100 pages in 1900, or 200 pages in 1950, or 500 pages in 2000 is unusually long for a proof. *1799 The Abel–Ruffini theorem was nearly proved by Paolo Ruffini, but his proof, spanning 500 pages, was mostly ignored and later, in 1824, Niels Henrik Abel published a proof that required just six pages. *1890 Killing's classification of simple complex Lie algebras, including his discovery of the exceptional Lie algebras, took 180 pages in 4 papers. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic that represents Mathematical proof, proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as Recursive data type, inductively-defined data structures such as list (computer science), lists, boxed lists, or Tree (data structure), trees, which are constructed according to the axioms and rule of inference, rules of inference of the logical system. Consequently, proof theory is syntax (logic), syntactic in nature, in contrast to model theory, which is Formal semantics (logic), semantic in nature. Some of the major areas of proof theory include structural proof theory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In The Foundations Of Mathematics
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]