HOME
*



picture info

Grundy Number
In graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939. The undirected version was introduced by .. Example For example, for a path graph with four vertices, the chromatic number is two but the Grundy number is three: if the two endpoints of the path are colored first, the greedy coloring algorithm will use three colors for the whole graph. Atoms defines a sequence of graphs called -''atoms'', with the property that a graph has Grundy number at least if and only if it contains a -atom. Each -atom is formed from an independent set and a -atom, by adding one edge from each vertex of the -atom to a ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Greedy Colourings
Greedy may refer to: __NOTOC__ Music * ''Greedy'' (album), a 1997 album by Headless Chickens * "Greedy" (song), a song on the album ''Dangerous Woman'' by Ariana Grande * "Greedy", a single by Canadian rock band Pure * "Greedy", a song on the album ''Mass Nerder'' by the punk rock band All * "Greedy", a song on the album ''Lyfe 268‒192'' by Lyfe Jennings * "Greedy", a song on the album ''Training Day'' by The Away Team * "Greedy", a song on the mixtape ''Keep Flexin'' by Rich the Kid People * Greedy Smith (1956–2019), pseudonym of Andrew McArthur Smith, singer, musician and songwriter with the Australian pop/new wave band Mental As Anything * Greedy Williams (born 1997), American football player nicknamed "Greedy" * Jack Greedy (1929–1988), Canadian racing driver, member of the Canadian Motorsport Hall of Fame Other uses * Greedy algorithm, any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage * ''Greedy'' (film), a 199 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parameterized Complexity
In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to ''multiple'' parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input. The first systematic work on parameterized complexity was done by . Under the assumption that P ≠ NP, there exist many natural problems that require superpolynomial running time when complexity is measured in terms of the input size only, but that are computable in a time that is polynomial in the input size and exponential or worse in a parameter . Hence, if is fixed at a small value and the growth of the function over is relatively small then such p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subgraph Isomorphism
In theoretical computer science, the subgraph isomorphism problem is a computational task in which two graphs ''G'' and ''H'' are given as input, and one must determine whether ''G'' contains a subgraph that is isomorphic to ''H''. Subgraph isomorphism is a generalization of both the maximum clique problem and the problem of testing whether a graph contains a Hamiltonian cycle, and is therefore NP-complete. However certain other cases of subgraph isomorphism may be solved in polynomial time. Sometimes the name subgraph matching is also used for the same problem. This name puts emphasis on finding such a subgraph as opposed to the bare decision problem. Decision problem and computational complexity To prove subgraph isomorphism is NP-complete, it must be formulated as a decision problem. The input to the decision problem is a pair of graphs ''G'' and ''H''. The answer to the problem is positive if ''H'' is isomorphic to a subgraph of ''G'', and negative otherwise. Formal question: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Claw-free Graph
In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph ''K''1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph. Claw-free graphs were initially studied as a generalization of line graphs, and gained additional motivation through three key discoveries about them: the fact that all claw-free connected graphs of even order have perfect matchings, the discovery of polynomial time algorithms for finding maximum independent sets in claw-free graphs, and the characterization of claw-free perfect graphs., p. 88. They are the subject of hundreds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exponential Time Hypothesis
In computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved more quickly than exponential time in the worst case. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement. It implies that many computational problems are equivalent in complexity, in the sense that if one of them has a subexponential time algorithm then they all do, and that many known algorithms for these problems have optimal or near-optimal time Definition The problem is a version of the Boolean satisfiability problem in which the input to the problem is a Boolean expression in conjunctive normal form (that is, an ''and'' of ''ors'' of variables and their negations) with at most k variables per clause. The goal is to determine whether this expression can be made to be true by some assignment of Boolean values to its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SIAM Journal On Discrete Mathematics
'' SIAM Journal on Discrete Mathematics'' is a peer-reviewed mathematics journal published quarterly by the Society for Industrial and Applied Mathematics (SIAM). The journal includes articles on pure and applied discrete mathematics. It was established in 1988, along with the ''SIAM Journal on Matrix Analysis and Applications'', to replace the ''SIAM Journal on Algebraic and Discrete Methods''. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.57. According to the ''Journal Citation Reports'', the journal has a 2016 impact factor of 0.755. Although its official ISO abbreviation is ''SIAM J. Discrete Math.'', its publisher and contributors frequently use the shorter abbreviation ''SIDMA''. References External links * Combinatorics journals Publications established in 1988 English-language journals Discrete Mathematics Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way ana ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Treewidth
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly are called '' -trees'', and the graphs with treewidth at most are called '' partial -trees''. Many other well-studied graph families also have bounded treewidth. Treewidth may be formally defined in several equivalent ways: in terms of the size of the largest vertex set in a tree decomposition of the graph, in terms of the size of the largest clique in a chordal completion of the graph, in terms of the maximum order of a haven describing a strategy for a pursuit–evasion game on the graph, or in terms of the maximum order of a bramble, a collection of connected subgraphs that all touch each other. Treewidth is commonly used as a pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial K-tree
In graph theory, a partial ''k''-tree is a type of graph, defined either as a subgraph of a ''k''-tree or as a graph with treewidth at most ''k''. Many NP-hard combinatorial problems on graphs are solvable in polynomial time when restricted to the partial ''k''-trees, for bounded values of ''k''. Graph minors For any fixed constant ''k'', the partial ''k''-trees are closed under the operation of graph minors, and therefore, by the Robertson–Seymour theorem, this family can be characterized in terms of a finite set of forbidden minors. The partial 1-trees are exactly the forests, and their single forbidden minor is a triangle. For the partial 2-trees the single forbidden minor is the complete graph on four vertices. However, the number of forbidden minors increases for larger values of ''k''. For partial 3-trees there are four forbidden minors: the complete graph on five vertices, the octahedral graph with six vertices, the eight-vertex Wagner graph, and the pentagonal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree (graph Theory)
In graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ..., a tree is an undirected graph in which any two Vertex (graph theory), vertices are connected by ''exactly one'' Path (graph theory), path, or equivalently a Connected graph, connected Cycle (graph theory), acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a Disjoint union of graphs, disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirecte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Ratio
An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ''ad-'' (''ad-'' before ''p'' becomes ap- by assimilation) meaning ''to''. Words like ''approximate'', ''approximately'' and ''approximation'' are used especially in technical or scientific contexts. In everyday English, words such as ''roughly'' or ''around'' are used with a similar meaning. It is often found abbreviated as ''approx.'' The term can be applied to various properties (e.g., value, quantity, image, description) that are nearly, but not exactly correct; similar, but not exactly the same (e.g., the approximate time was 10 o'clock). Although approximation is most often applied to numbers, it is also frequently applied to such things as mathematical functions, shapes, and physical laws. In science, approximation can refer to u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]