Growth Rate (other)
Growth rate may refer to: By rate *Asymptotic analysis, a branch of mathematics concerned with the analysis of growth rates * Linear growth *Exponential growth, a growth rate classification *Any of a variety of growth rates classified by such things as the Landau notation By type of growing medium *Economic growth, the increase in value of the goods and services produced by an economy * Compound annual growth rate or CAGR, a measure of financial growth *Population growth rate Population growth is the increase in the number of people in a population or dispersed group. Actual global human population growth amounts to around 83 million annually, or 1.1% per year. The global population has grown from 1 billion in 1800 to ..., change in population over time * Growth rate (group theory), a property of a group in group theory In biology *The rate of growth in any biological system, see Growth Biology. {{disambig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \qu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Growth
In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For distinguishing such a linear function from the other concept, the term affine function is often used. * In linear algebra, mathematical analysis, and functional analysis, a linear function is a linear map. As a polynomial function In calculus, analytic geometry and related areas, a linear function is a polynomial of degree one or less, including the zero polynomial (the latter not being considered to have degree zero). When the function is of only one variable, it is of the form :f(x)=ax+b, where and are constants, often real numbers. The graph of such a function of one variable is a nonvertical line. is frequently referred to as the slope of the line, and as the intercept. If ''a > 0'' then the gradient is positive and the graph slop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponential Growth
Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). If the constant of proportionality is negative, then the quantity decreases over time, and is said to be undergoing exponential decay instead. In the case of a discrete domain of definition with equal intervals, it is also called geometric growth or geometric decay since the function values form a geometric progression. The formula for exponential growth of a variable at the growth rate , as time goes on in discrete intervals (that is, at integer times 0, 1, 2, 3, ...), is x_t = x_0(1+r)^t where is the value of at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Landau Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: diff ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Economic Growth
Economic growth can be defined as the increase or improvement in the inflation-adjusted market value of the goods and services produced by an economy in a financial year. Statisticians conventionally measure such growth as the percent rate of increase in the real gross domestic product, or real GDP. Growth is usually calculated in real terms – i.e., inflation-adjusted terms – to eliminate the distorting effect of inflation on the prices of goods produced. Measurement of economic growth uses national income accounting. Since economic growth is measured as the annual percent change of gross domestic product (GDP), it has all the advantages and drawbacks of that measure. The economic growth-rates of countries are commonly compared using the ratio of the GDP to population (per-capita income). The "rate of economic growth" refers to the geometric annual rate of growth in GDP between the first and the last year over a period of time. This growth rate represents the trend in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compound Annual Growth Rate
Compound annual growth rate (CAGR) is a business and investing specific term for the geometric progression ratio that provides a constant rate of return over the time period. CAGR is not an accounting term, but it is often used to describe some element of the business, for example revenue, units delivered, registered users, etc. CAGR dampens the effect of volatility of periodic returns that can render arithmetic means irrelevant. It is particularly useful to compare growth rates from various data sets of common domain such as revenue growth of companies in the same industry or sector. CAGR is equivalent to the more generic exponential growth rate when the exponential growth interval is one year. Formula CAGR is defined as: :\mathrm(t_0,t_n) = \left( \frac \right)^\frac - 1 where V(t_0) is the initial value, V(t_n) is the end value, and t_n - t_0 is the number of years. Actual or normalized values may be used for calculation as long as they retain the same mathematical propor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Population Growth Rate
Population growth is the increase in the number of people in a population or dispersed group. Actual global human population growth amounts to around 83 million annually, or 1.1% per year. The global population has grown from 1 billion in 1800 to 7.9 billion in 2020. The UN projected population to keep growing, and estimates have put the total population at 8.6 billion by mid-2030, 9.8 billion by mid-2050 and 11.2 billion by 2100. However, some academics outside the UN have increasingly developed human population models that account for additional downward pressures on population growth; in such a scenario population would peak before 2100. World human population has been growing since the end of the Black Death, around the year 1350. A mix of technological advancement that improved agricultural productivity and sanitation and medical advancement that reduced mortality increased population growth. In some geographies, this has slowed through the process called the demographic tra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Growth Rate (group Theory)
In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length ''n''. Definition Suppose ''G'' is a finitely generated group; and ''T'' is a finite ''symmetric'' set of generators (symmetric means that if x \in T then x^ \in T ). Any element x \in G can be expressed as a word in the ''T''-alphabet : x = a_1 \cdot a_2 \cdots a_k \text a_i\in T. Consider the subset of all elements of ''G'' that can be expressed by such a word of length ≤ ''n'' :B_n(G,T) = \. This set is just the closed ball of radius ''n'' in the word metric ''d'' on ''G'' with respect to the generating set ''T'': :B_n(G,T) = \. More geometrically, B_n(G,T) is the set of vertices in the Cayley graph with respect to ''T'' that are within distan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |