HOME
*





Group-scheme Action
In algebraic geometry, an action of a group scheme is a generalization of a group action to a group scheme. Precisely, given a group ''S''-scheme ''G'', a left action of ''G'' on an ''S''-scheme ''X'' is an ''S''-morphism :\sigma: G \times_S X \to X such that * (associativity) \sigma \circ (1_G \times \sigma) = \sigma \circ (m \times 1_X), where m: G \times_S G \to G is the group law, * (unitality) \sigma \circ (e \times 1_X) = 1_X, where e: S \to G is the identity section of ''G''. A right action of ''G'' on ''X'' is defined analogously. A scheme equipped with a left or right action of a group scheme ''G'' is called a ''G''-scheme. An equivariant morphism between ''G''-schemes is a morphism of schemes that intertwines the respective ''G''-actions. More generally, one can also consider (at least some special case of) an action of a group functor: viewing ''G'' as a functor, an action is given as a natural transformation satisfying the conditions analogous to the above.In details, gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linearization
In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology. Linearization of a function Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function y = f(x) at any x = a based on the value and slope of the function at x = b, given that f(x) is differentiable on , b/math> (or , a/math>) and that a is close to b. In short, linearization approximates the output of a function near x = a. For example, \sqrt = 2. However, what would be a good appro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Fixed-point Theorem
In mathematics, the Borel fixed-point theorem is a fixed-point theorem in algebraic geometry generalizing the Lie–Kolchin theorem. The result was proved by . Statement If ''G'' is a connected, solvable, linear algebraic group acting regularly on a non-empty, complete algebraic variety ''V'' over an algebraically closed field ''k'', then there is a ''G'' fixed-point of ''V''. A more general version of the theorem holds over a field ''k'' that is not necessarily algebraically closed. A solvable algebraic group ''G'' is ''split over k'' or ''k-split'' if ''G'' admits a composition series whose composition factors are isomorphic (over ''k'') to the additive group \mathbb G_a or the multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to ... \mathbb G_m. If ''G'' is a co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Sheaf
In mathematics, given an action \sigma: G \times_S X \to X of a group scheme ''G'' on a scheme ''X'' over a base scheme ''S'', an equivariant sheaf ''F'' on ''X'' is a sheaf of \mathcal_X-modules together with the isomorphism of \mathcal_-modules :\phi: \sigma^* F \xrightarrow p_2^*F   that satisfies the cocycle condition: writing ''m'' for multiplication, :p_^* \phi \circ (1_G \times \sigma)^* \phi = (m \times 1_X)^* \phi. Notes on the definition On the stalk level, the cocycle condition says that the isomorphism F_ \simeq F_x is the same as the composition F_ \simeq F_ \simeq F_x; i.e., the associativity of the group action. The condition that the unit of the group acts as the identity is also a consequence: apply (e \times e \times 1)^*, e: S \to G to both sides to get (e \times 1)^* \phi \circ (e \times 1)^* \phi = (e \times 1)^* \phi and so (e \times 1)^* \phi is the identity. Note that \phi is an additional data; it is "a lift" of the action of ''G'' on ''X'' to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sumihiro's Theorem
In algebraic geometry, Sumihiro's theorem, introduced by , states that a normal algebraic variety with an action of a torus can be covered Cover or covers may refer to: Packaging * Another name for a lid * Cover (philately), generic term for envelope or package * Album cover, the front of the packaging * Book cover or magazine cover ** Book design ** Back cover copy, part of co ... by torus-invariant affine open subsets. The "normality" in the hypothesis cannot be relaxed. The hypothesis that the group acting on the variety is a torus can also not be relaxed. Notes References *. External links * Theorems in algebraic geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivariant Object
In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. Equivariant maps generalize the concept of invariants, functions whose value is unchanged by a symmetry transformation of their argument. The value of an equivariant map is often (imprecisely) called an invariant. In statistical inference, equivariance under statistical transformations of data is an important property of various estimation methods; see invariant estimator for details. In pure mathematics, equivariance is a central object of study in equivariant topology and its subtopics equivariant cohomology and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topos
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stackification
In algebraic geometry, a prestack ''F'' over a category ''C'' equipped with some Grothendieck topology is a category together with a functor ''p'': ''F'' → ''C'' satisfying a certain lifting condition and such that (when the fibers are groupoids) locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object. Prestacks that appear in nature are typically stacks but some naively constructed prestacks (e.g., groupoid scheme or the prestack of projectivized vector bundles) may not be stacks. Prestacks may be studied on their own or passed to stacks. Since a stack is a prestack, all the results on prestacks are valid for stacks as well. Throughout the article, we work with a fixed base category ''C''; for example, ''C'' can be the category of all schemes over some fixed scheme equipped with some Grothendieck topology. Informal definition Let ''F'' be a category and suppose it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Teichmüller Space
In mathematics, the Teichmüller space T(S) of a (real) topological (or differential) surface S, is a space that parametrizes complex structures on S up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller. Each point in a Teichmüller space T(S) may be regarded as an isomorphism class of "marked" Riemann surfaces, where a "marking" is an isotopy class of homeomorphisms from S to itself. It can be viewed as a moduli space for marked Riemann surface#Hyperbolic Riemann surfaces, hyperbolic structure on the surface, and this endows it with a natural topology for which it is homeomorphic to a Ball (mathematics), ball of dimension 6g-6 for a surface of genus g \ge 2. In this way Teichmüller space can be viewed as the orbifold, universal covering orbifold of the Moduli of algebraic curves, Riemann moduli space. The Teichmüller space has a canonical complex manifold structure and a wealth of natural m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite-dimensional Space
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is finite, and if its dimension is infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as : F read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any field F. The complex numbers \Complex are both a real and complex vector space; we have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]