HOME
*





Gromov's Inequality For Complex Projective Space
In Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality : \mathrm_2^n \leq n! \;\mathrm_(\mathbb^n), valid for an arbitrary Riemannian metric on the complex projective space, where the optimal bound is attained by the symmetric Fubini–Study metric, providing a natural geometrisation of quantum mechanics. Here \operatorname is the stable 2-systole, which in this case can be defined as the infimum of the areas of rational 2-cycles representing the class of the complex projective line \mathbb^1 \subset \mathbb^n in 2-dimensional homology. The inequality first appeared in as Theorem 4.36. The proof of Gromov's inequality relies on the Wirtinger inequality for exterior 2-forms. Projective planes over division algebras \mathbb In the special case n=2, Gromov's inequality becomes \mathrm_2^2 \leq 2 \mathrm_4(\mathbb^2). This inequality can be thought of as an analog of Pu's inequality for the real projective plane \mathbb^2. In both cases, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "''Ueber die Hypothesen, welche der Geometrie zu Grunde liegen''" ("On the Hypotheses on which Geometry is Based.") It is a very broad and abstract generalization of the differential geometry of surfaces in R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mikhail Gromov (mathematician)
Mikhael Leonidovich Gromov (also Mikhail Gromov, Michael Gromov or Misha Gromov; russian: link=no, Михаи́л Леони́дович Гро́мов; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of IHÉS in France and a professor of mathematics at New York University. Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry". Biography Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His Russian father Leonid Gromov and his Jewish mother Lea Rabinovitz were pathologists. His mother was the cousin of World Chess Champion Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him. When Gromov was nine years old, his mother ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Systolic Geometry
In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry. The notion of systole The ''systole'' of a compact metric space ''X'' is a metric invariant of ''X'', defined to be the least length of a noncontractible loop in ''X'' (i.e. a loop that cannot be contracted to a point in the ambient space ''X''). In more technical language, we minimize length over free loops representing nontrivial conjugacy classes in the fundamental group of ''X''. When ''X'' is a graph, the invariant is usually referred to as the girth, ever since the 1947 article on girth by W. T. Tutte. Possibly inspired by Tutte's article, Loewner started thinking about systolic questions on surfaces in the la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Projective Space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the ''complex'' lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (''n''+1)-dimensional complex vector space. The space is denoted variously as P(C''n''+1), P''n''(C) or CP''n''. When , the complex projective space CP1 is the Riemann sphere, and when , CP2 is the complex projective plane (see there for a more elementary discussion). Complex projective space was first introduced by as an instance of what was then known as the "geometry of position", a notion originally due to Lazare Carnot, a kind of synthetic geometry that included other projective geometries as well. Sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fubini–Study Metric
In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CP''n'' endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study. A Hermitian form in (the vector space) C''n''+1 defines a unitary subgroup U(''n''+1) in GL(''n''+1,C). A Fubini–Study metric is determined up to homothety (overall scaling) by invariance under such a U(''n''+1) action; thus it is homogeneous. Equipped with a Fubini–Study metric, CP''n'' is a symmetric space. The particular normalization on the metric depends on the application. In Riemannian geometry, one uses a normalization so that the Fubini–Study metric simply relates to the standard metric on the (2''n''+1)-sphere. In algebraic geometry, one uses a normalization making CP''n'' a Hodge manifold. Construction The Fubini–Study metric arises naturally in the quotient space construction of complex projective space. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wirtinger Inequality (2-forms)
: ''For other inequalities named after Wirtinger, see Wirtinger's inequality.'' In mathematics, the Wirtinger inequality for 2-forms, named after Wilhelm Wirtinger, states that on a Kähler manifold , the exterior th power of the symplectic form (Kähler form) , when evaluated on a simple (decomposable) -vector of unit volume, is bounded above by . That is, : (\underbrace_)(v_1,\ldots,v_) \leq k ! for any orthonormal vectors . In other words, is a calibration on . An important corollary of the further characterization of equality is that every complex submanifold of a Kähler manifold is volume minimizing in its homology class. See also *2-form *Gromov's inequality for complex projective space * Systolic geometry Notes References *{{cite book, last = Federer, first = Herbert, author-link1=Herbert Federer, title = Geometric measure theory, place= Berlin–Heidelberg–New York, publisher = Springer-Verlag Springer Science+Business Media, commonly known as Springer, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pu's Inequality
In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it. Statement A student of Charles Loewner, Pu proved in his 1950 thesis that every Riemannian surface M homeomorphic to the real projective plane satisfies the inequality : \operatorname(M) \geq \frac \operatorname(M)^2 , where \operatorname(M) is the systole of M . The equality is attained precisely when the metric has constant Gaussian curvature. In other words, if all noncontractible loops in M have length at least L , then \operatorname(M) \geq \frac L^2, and the equality holds if and only if M is obtained from a Euclidean sphere of radius r=L/\pi by identifying each point with its antipodal. Pu's paper also stated for the first time Loewner's inequality, a similar result for Riemannian metrics on the torus. Proof Pu's original proof relies on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loewner's Torus Inequality
In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus. Statement In 1949 Charles Loewner proved that every metric on the 2-torus \mathbb T^2 satisfies the optimal inequality : \operatorname^2 \leq \frac \operatorname(\mathbb T^2), where "sys" is its systole, i.e. least length of a noncontractible loop. The constant appearing on the right hand side is the Hermite constant \gamma_2 in dimension 2, so that Loewner's torus inequality can be rewritten as : \operatorname^2 \leq \gamma_2\;\operatorname(\mathbb T^2). The inequality was first mentioned in the literature in . Case of equality The boundary case of equality is attained if and only if the metric is flat and homothetic to the so-called ''equilateral torus'', i.e. torus whose group of deck transformations is precisely the hexagonal lattice spanned by the cube roots of unity in \mathbb C. Alter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gromov's Inequality (other)
The following pages deal with inequalities due to Mikhail Gromov: * Bishop–Gromov inequality * Gromov's inequality for complex projective space * Gromov's systolic inequality for essential manifolds In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1 ... * Lévy–Gromov inequality {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gromov's Systolic Inequality For Essential Manifolds
In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983;see it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane. Technically, let ''M'' be an essential Riemannian manifold of dimension ''n''; denote by sys''π''1(''M'') the homotopy 1-systole of ''M'', that is, the least length of a non-contractible loop on ''M''. Then Gromov's inequality takes the form : \left(\operatorname_1(M)\right)^n \leq C_n \operatorname(M), where ''C''''n'' is a universal constant only depending on the dimension of ''M''. Essential manifolds A closed manifold is called ''essential'' if its fundamental class defines a nonzero element in the homology of its fundamental group, or more precisely in the homology of the corre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Systolic Geometry
In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry. The notion of systole The ''systole'' of a compact metric space ''X'' is a metric invariant of ''X'', defined to be the least length of a noncontractible loop in ''X'' (i.e. a loop that cannot be contracted to a point in the ambient space ''X''). In more technical language, we minimize length over free loops representing nontrivial conjugacy classes in the fundamental group of ''X''. When ''X'' is a graph, the invariant is usually referred to as the girth, ever since the 1947 article on girth by W. T. Tutte. Possibly inspired by Tutte's article, Loewner started thinking about systolic questions on surfaces in the la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]