Green’s Theorem
In vector calculus, Green's theorem relates a line integral around a Curve#Definition, simple closed curve to a double integral over the Plane (geometry), plane region (surface in \R^2) bounded by . It is the two-dimensional special case of Kelvin–Stokes theorem, Stokes' theorem (surface in \R^3). In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is Divergence theorem#Multiple dimensions, equivalent to the divergence theorem. Theorem Let be a positively Curve orientation, oriented, piecewise Smoothness, smooth, simple closed curve in a plane (mathematics), plane, and let be the region bounded by . If and are functions of defined on an Open set, open region containing and have Continuous function, continuous partial derivatives there, then \oint_C (L\, dx + M\, dy) = \iint_ \left(\frac - \frac\right) dA where the path of integration along is counterclockwise. Application In physics, Green's theorem finds many applica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Green's Law
In fluid dynamics, Green's law, named for 19th-century British mathematician George Green (mathematician), George Green, is a conservation law describing the evolution of breaking wave, non-breaking, surface gravity waves Wave propagation, propagating in waves and shallow water, shallow water of gradually varying depth and width. In its simplest form, for wavefronts and depth contours parallel to each other (and the coast), it states: :H_1\, \cdot\, \sqrt[4] = H_2\, \cdot\, \sqrt[4] or \left(H_1\right)^4\, \cdot\, h_1 = \left(H_2\right)^4\, \cdot\, h_2, where H_1 and H_2 are the wave heights at two different locations – 1 and 2 respectively – where the wave passes, and h_1 and h_2 are the mean water depths at the same two locations. Green's law is often used in coastal engineering for the modelling of long wave shoaling, shoaling waves on a beach, with "long" meaning wavelengths in excess of about twenty times the mean water depth. Tsunamis shoal (change their height) in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Counterclockwise
Two-dimensional rotation can occur in two possible directions or senses of rotation. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands relative to the observer: from the top to the right, then down and then to the left, and back up to the top. The opposite sense of rotation or revolution is (in Commonwealth English) anticlockwise (ACW) or (in North American English) counterclockwise (CCW). Three-dimensional rotation can have similarly defined senses when considering the corresponding angular velocity vector. Terminology Before clocks were commonplace, the terms " sunwise" and "deasil", "deiseil" and even "deocil" from the Scottish Gaelic language and from the same root as the Latin "dexter" ("right") were used for clockwise. " Widdershins" or "withershins" (from Middle Low German "weddersinnes", "opposite course") was used for counterclockwise. The terms clockwise and counterclockwise can only be applied to a rotational motion once a side ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) \, dx is an example of a -form, and can be integrated over an interval ,b/math> contained in the domain of f: \int_a^b f(x)\,dx. Similarly, the expression f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz is a -form that can be integrated over a surface S: \int_S \left(f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz\right). The symbol \wedge denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form f(x,y,z) \, dx \wedge dy \wedge dz represents a volume element that can be integrated over a region of space. In general, a -form is an object ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Vector
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space. A '' vector quantity'' is a vector-valued physical quantity, including units of measurement and possibly a support, formulated as a '' directed line segment''. A vector is frequently depicted graphically as an arrow connecting an ''initial point'' ''A'' with a ''terminal point'' ''B'', and denoted by \stackrel \longrightarrow. A vector is what is needed to "carry" the point ''A'' to the point ''B''; the Latin word means 'carrier'. It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from ''A'' to ''B''. Many algebraic operations on real numbe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stokes' Theorem
Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on \R^3. Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: : The line integral of a vector field over a loop is equal to the surface integral of its '' curl'' over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. In particular, a vector field on \R^3 can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form. Theorem Let \Sigma be a smooth oriented surface in \R^3 with boundary \partial \Sigma \equiv \Gamma . If a vector field \mathbf(x,y,z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)) is defined and has continuous first ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Addison-Wesley
Addison–Wesley is an American publisher of textbooks and computer literature. It is an imprint of Pearson plc, a global publishing and education company. In addition to publishing books, Addison–Wesley also distributes its technical titles through the O'Reilly Online Learning e-reference service. Addison–Wesley's majority of sales derive from the United States (55%) and Europe (22%). The Addison–Wesley Professional Imprint produces content including books, eBooks, and video for the professional IT worker including developers, programmers, managers, system administrators. Classic titles include '' The Art of Computer Programming'', '' The C++ Programming Language'', '' The Mythical Man-Month'', and '' Design Patterns''. History Lew Addison Cummings and Melbourne Wesley Cummings founded Addison–Wesley in 1942, with the first book published by Addison–Wesley being Massachusetts Institute of Technology professor Francis Weston Sears' ''Mechanics''. Its first comput ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jordan Curve Theorem
In topology, the Jordan curve theorem (JCT), formulated by Camille Jordan in 1887, asserts that every ''Jordan curve'' (a plane simple closed curve) divides the plane into an "interior" region Boundary (topology), bounded by the curve (not to be confused with the interior (topology), interior of a set) and an "exterior" region containing all of the nearby and far away exterior points. Every path (topology), continuous path connecting a point of one region to a point of the other intersects with the curve somewhere. While the theorem seems intuitively obvious, it takes some ingenuity to prove it by elementary means. "Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it." (). More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces. The Jordan curve theorem is named after the mathematician Camil ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parametric Equation
In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point (mathematics), point, as Function (mathematics), functions of one or several variable (mathematics), variables called parameters. In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a Surface (mathematics), surface, called a parametric surface. In all cases, the equations are collectively called a parametric representation, or parametric system, or parameterization (also spelled parametrization, parametrisation) of the object. For example, the equations \begin x &= \cos t \\ y &= \sin t \end form a parametric representation of the unit circle, where is the parameter: A point is on the unit circle if and only if there is a value of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surveying
Surveying or land surveying is the technique, profession, art, and science of determining the land, terrestrial Plane (mathematics), two-dimensional or Three-dimensional space#In Euclidean geometry, three-dimensional positions of Point (geometry), points and the Euclidean distance, distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designated positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales. A professional in land surveying is called a land surveyor. Surveyors work with elements of geodesy, geometry, trigonometry, regression analysis, physics, engineering, metrology, programming languages, and the law. They use equipment, such as total stations, robotic total stations, theodolites, Satellite navigation, GNSS receivers, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |