Gopakumar–Vafa Duality
   HOME





Gopakumar–Vafa Duality
Gopakumar–Vafa duality is a duality in string theory, hence a correspondence between two different theories, in this case between Chern–Simons theory and Gromov–Witten theory. The latter is known as the mathematical equivalent of string theory in mathematics and counts pseudoholomorphic curves on a symplectic manifold, similar to Gopakumar–Vafa invariants and Pandharipande–Thomas invariants. Gopakumar–Vafa duality is named after Rajesh Gopakumar and Cumrun Vafa, who first described it in 1998. Formulation Gopakumar–Vafa duality describes a correspondence between Chern–Simons theory on the cotangent bundle T^*S^3 over the three-dimensional sphere S^3 and Gromov–Witten theory on the Whitney sum \mathcal(-2) =\mathcal(-1)\oplus\mathcal(-1) of the tautological bundle over the two-dimensional sphere S^2\cong\mathbbP^1. One has a canonical inclusion S^3\hookrightarrow\mathbb^4, which induces an inclusion T^*S^3\hookrightarrow T^*\mathbb^4\cong\mathbb^4\times\mathbb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string acts like a particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and condensed matter ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zero Section
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Geometry And Physics
The ''Journal of Geometry and Physics'' is a scientific journal in mathematical physics. Its scope is to stimulate the interaction between geometry and physics by publishing primary research and review articles which are of common interest to practitioners in both fields. The journal is published by Elsevier since 1984. The Journal covers the following areas of research: ''Methods of:'' * Algebraic and Differential Topology * Algebraic Geometry * Real and Complex Differential Geometry * Riemannian and Finsler Manifolds * Symplectic Geometry * Global Analysis, Analysis on Manifolds * Geometric Theory of Differential Equations * Geometric Control Theory * Lie Groups and Lie Algebras * Supermanifolds and Supergroups * Discrete Geometry * Spinors and Twistors ''Applications to:'' * Strings and Superstrings * Noncommutative Topology and Geometry * Quantum Groups * Geometric Methods in Statistics and Probability * Geometry Approaches to Thermodynamics * Classical and Quantum Dynamical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometry & Topology Monographs
Mathematical Sciences Publishers is a nonprofit publishing company run by and for mathematicians. It publishes several journals and the book series ''Geometry & Topology Monographs''. It is run from a central office in the Department of Mathematics at the University of California, Berkeley. Journals owned and published * ''Algebra & Number Theory'' * ''Algebraic & Geometric Topology'' * ''Analysis & PDE'' * ''Annals of K-Theory'' * ''Communications in Applied Mathematics and Computational Science'' * ''Geometry & Topology'' * ''Innovations in Incidence Geometry—Algebraic, Topological and Combinatorial'' * ''Involve: A Journal of Mathematics'' * ''Journal of Algebraic Statistics'' * ''Journal of Mechanics of Materials and Structures'' * ''Journal of Software for Algebra and Geometry'' * ''Mathematics and Mechanics of Complex Systems'' * ''Moscow Journal of Combinatorics and Number Theory'' * ''Pacific Journal of Mathematics'' * ''Probability and Mathematical Physics'' * ''Pur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Advances In Theoretical And Mathematical Physics
'' Advances in Theoretical and Mathematical Physics'' ''(ATMP)'' is a peer-reviewed, mathematics journal, published by International Press. Established in 1997, the journal publishes articles on theoretical physics and mathematics. The current managing editors are Charles Doran, Babak Haghighat, Junya Yagi and Hossein Yavartanoo. Abstracting, indexing, and reviews This journal is indexed in the following databases: *Science Citation Index Expanded *MathSciNet – also reviews this journal *Current Contents: Physical, Chemical & Earth Sciences *Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastru ... External links * Mathematical physics journals Physics journals Academic journals established in 1997 English-language journals International Press academic journa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lens Space
A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions. In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and S^2 \times S^1, both of which can be obtained as above, are not counted as they are considered trivial special cases. The three-dimensional lens spaces L(p;q) were introduced by Heinrich Tietze in 1908. They were the first known examples of 3-manifolds which were not determined by their homology and fundamental group alone, and the simplest examples of closed manifolds whose homeomorphism type is not determined by their homotopy type. J. W. Alexander in 1919 showed that the lens spaces L(5;1) and L(5;2) were not homeomorphic even though they have isomorphic fundamental groups and the same homology, though they do not have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surgery Theory
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while Andrew H. Wallace, Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold ''M'' of dimension n=p+q+1, could be described as removing an imbedded sphere of dimension ''p'' from ''M''. Originally developed for differentiable (or, differentiable manifolds, smooth) manifolds, surgery techniques also apply to piecewise linear manifold, piecewise linear (PL-) and topological manifolds. Surgery refers to cutting out parts of the manifold and replacing it with a part of another manifold, matching up along the cut or boundary. This is closely related to, but not identical with, handlebody decompositions. More technically, the idea is to start with a well-understood manifold ''M'' and perform surgery on it to pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conifold
In mathematics and string theory, a conifold is a generalization of a manifold. Unlike manifolds, conifolds can contain conical singularities, i.e. points whose neighbourhoods look like cones over a certain base. In physics, in particular in flux compactifications of string theory, the base is usually a five-dimensional real manifold, since the typically considered conifolds are complex 3-dimensional (real 6-dimensional) spaces. Overview Conifolds are important objects in string theory: Brian Greene explains the physics of conifolds in Chapter 13 of his book '' The Elegant Universe''—including the fact that the space can tear near the cone, and its topology can change. This possibility was first noticed by and employed by to prove that conifolds provide a connection between all (then) known Calabi–Yau compactifications in string theory; this partially supports a conjecture by whereby conifolds connect all possible Calabi–Yau complex 3-dimensional spaces. A well-known ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chern Class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, and Gromov–Witten invariants. Chern classes were introduced by . Geometric approach Basic idea and motivation Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different. The converse, however, is not true. In topology, differential geometry, and algebraic geometry, it is often important to count how many linearly independent sect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Special Unitary Group
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The simplest case, , is the trivial group, having only a single element. The group is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]