Goodstein's Theorem
In mathematical logic, Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which states that every ''Goodstein sequence'' eventually terminates at 0. Kirby and Paris showed that it is unprovable in Peano arithmetic (but it can be proven in stronger systems, such as second-order arithmetic). This was the third example of a true statement that is unprovable in Peano arithmetic, after the examples provided by Gödel's incompleteness theorem and Gerhard Gentzen's 1943 direct proof of the unprovability of ε0-induction in Peano arithmetic. The Paris–Harrington theorem gave another example. Laurence Kirby and Jeff Paris introduced a graph-theoretic hydra game with behavior similar to that of Goodstein sequences: the "Hydra" (named for the mythological multi-headed Hydra of Lerna) is a rooted tree, and a move consists of cutting off one of its "heads" (a branch of the tree), to which the hydra responds by growing a finite number of new ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-standard Model Of Arithmetic
Standardization or standardisation is the process of implementing and developing technical standards based on the consensus of different parties that include firms, users, interest groups, standards organizations and governments. Standardization can help maximize compatibility, interoperability, safety, repeatability, or quality. It can also facilitate a normalization of formerly custom processes. In social sciences, including economics, the idea of ''standardization'' is close to the solution for a coordination problem, a situation in which all parties can realize mutual gains, but only by making mutually consistent decisions. History Early examples Standard weights and measures were developed by the Indus Valley civilization.Iwata, Shigeo (2008), "Weights and Measures in the Indus Valley", ''Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2nd edition)'' edited by Helaine Selin, pp. 2254–2255, Springer, . The centralized wei ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Articles Containing Proofs
Article often refers to: * Article (grammar), a grammatical element used to indicate definiteness or indefiniteness * Article (publishing), a piece of nonfictional prose that is an independent part of a publication Article may also refer to: Government and law * Article (European Union), articles of treaties of the European Union * Articles of association, the regulations governing a company, used in India, the UK and other countries * Articles of clerkship, the contract accepted to become an articled clerk * Articles of Confederation, the predecessor to the current United States Constitution *Article of Impeachment, a formal document and charge used for impeachment in the United States * Articles of incorporation, for corporations, U.S. equivalent of articles of association * Articles of organization, for limited liability organizations, a U.S. equivalent of articles of association Other uses * Article, an HTML element, delimited by the tags and * Article of clothing, an ite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Independence Results
Independence is a condition of a person, nation, country, or state in which residents and population, or some portion thereof, exercise self-government, and usually sovereignty, over its territory. The opposite of independence is the status of a dependent territory. The commemoration of the independence day of a country or nation celebrates when a country is free from all forms of foreign colonialism; free to build a country or nation without any interference from other nations. Definition of independence Whether the attainment of independence is different from revolution has long been contested, and has often been debated over the question of violence as legitimate means to achieving sovereignty. In general, revolutions aim only to redistribute power with or without an element of emancipation,such as in democratization ''within'' a state, which as such may remain unaltered. For example, the Mexican Revolution (1910) chiefly refers to a multi-factional conflict that even ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Symbolic Logic
The '' Journal of Symbolic Logic'' is a peer-reviewed mathematics journal published quarterly by Association for Symbolic Logic. It was established in 1936 and covers mathematical logic. The journal is indexed by '' Mathematical Reviews'', Zentralblatt MATH, and Scopus. Its 2009 MCQ was 0.28, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... was 0.631. External links * Mathematics journals Publications established in 1936 Multilingual journals Quarterly journals Association for Symbolic Logic academic journals Logic journals Cambridge University Press academic journals {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kruskal's Tree Theorem
In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. History The theorem was conjectured by Andrew Vázsonyi and proved by ; a short proof was given by . It has since become a prominent example in reverse mathematics as a statement that cannot be proved within ATR0 (a form of arithmetical transfinite recursion), and a finitary application of the theorem gives the existence of the fast-growing TREE function. In 2004, the result was generalized from trees to graphs as the Robertson–Seymour theorem, a result that has also proved important in reverse mathematics and leads to the even-faster-growing SSCG function. Statement The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree with a root, and given vertices , , call a successor of if the unique path from the root ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kanamori–McAloon Theorem
In mathematical logic, the Kanamori–McAloon theorem, due to , gives an example of an incompleteness in Peano arithmetic, similar to that of the Paris–Harrington theorem. They showed that a certain finitistic theorem in Ramsey theory is not provable in Peano arithmetic (PA). Statement Given a set s\subseteq\mathbb of non-negative integers, let min(s) denote the minimum element of s. Let n denote the set of all ''n''-element subsets of X. A function f: n\rightarrow\mathbb where X\subseteq\mathbb is said to be ''regressive'' if f(s) |
|
Fast-growing Hierarchy
In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy) is an ordinal-indexed family of rapidly increasing functions ''f''α: N → N (where N is the set of natural numbers , and α ranges up to some large countable ordinal). A primary example is the Wainer hierarchy, or Löb–Wainer hierarchy, which is an extension to all α < ε0. Such hierarchies provide a natural way to classify s according to rate-of-growth and . ...
|
|
Turing Machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write and which direction to move is based on a finite table that specifies what to do for each comb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computable Function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions. Before the precise definition of computable function, mathematicians often used the informal term ''effectively calculable''. This term has since come to be identified with the com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graham's Number
Graham's number is an immense number that arose as an upper bound on the answer of a problem in the mathematical field of Ramsey theory. It is much larger than many other large numbers such as Skewes's number and Moser's number, both of which are in turn much larger than a googolplex. As with these, it is so large that the observable universe is far too small to contain an ordinary digital representation of Graham's number, assuming that each digit occupies one Planck volume, possibly the smallest measurable space. But even the number of digits in this digital representation of Graham's number would itself be a number so large that its digital representation cannot be represented in the observable universe. Nor even can the number of digits of ''that'' number—and so forth, for a number of times far exceeding the total number of Planck volumes in the observable universe. Thus Graham's number cannot be expressed even by physical universe-scale power towers of the form a ^. How ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ackermann Function
In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version, the two-argument Ackermann–Péter function is defined as follows for nonnegative integers ''m'' and ''n'': : \begin \operatorname(0, n) & = & n + 1 \\ \operatorname(m+1, 0) & = & \operatorname(m, 1) \\ \operatorname(m+1, n+1) & = & \operatorname(m, \operatorname(m+1, n)) \end Its value grows rapidly, even for small inputs. For example, is an integer o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |