HOME
*





Goodman's Conjecture
Goodman's conjecture on the coefficients of multivalent functions was proposed in complex analysis in 1948 by Adolph Winkler Goodman, an American mathematician. Formulation Let f(z)= \sum_^ be a p-valent function. The conjecture claims the following coefficients hold: , b_n, \le \sum_^ \frac, b_k, Partial results It's known that when p=2,3, the conjecture is true for functions of the form P \circ \phi where P is a polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ... and \phi is univalent. External sources * * * * *{{cite journal , doi=10.1090/S0002-9939-1995-1242085-7, title=On an identity related to multivalent functions , year=1995 , last1=Grinshpan , first1=A. Z. , journal=Proceedings of the American Mathematical Society , volume=123 , issue=4 , page=1199 , d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multivalent Function
In mathematics, a multivalued function, also called multifunction, many-valued function, set-valued function, is similar to a function, but may associate several values to each input. More precisely, a multivalued function from a domain to a codomain associates each in to one or more values in ; it is thus a serial binary relation. Some authors allow a multivalued function to have no value for some inputs (in this case a multivalued function is simply a binary relation). However, in some contexts such as in complex analysis (''X'' = ''Y'' = C), authors prefer to mimic function theory as they extend concepts of the ordinary (single-valued) functions. In this context, an ordinary function is often called a single-valued function to avoid confusion. The term ''multivalued function'' originated in complex analysis, from analytic continuation. It often occurs that one knows the value of a complex analytic function f(z) in some neighbourhood of a point z=a. This is the case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical branches in mathematics, with roots in the 18th century and just prior. Important mathematicians associated with comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adolph Winkler Goodman
Adolph Winkler Goodman (July 20, 1915 – July 30, 2004) was an American mathematician who contributed to number theory, graph theory and to the theory of univalent functions:See the brief obituary on him published on the newsletter of the department of Mathematics of the University of South Florida. The conjecture on the coefficients of multivalent functions named after him is considered the most interesting challenge in the area after the Bieberbach conjecture, proved by Louis de Branges in 1985.According to . Life and work In 1948, he made a mathematical conjecture on coefficients of -valent functions, first published in his Columbia University Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manhatt ... dissertation thesis and then in a closely following paper. After the proof of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Univalent Function
In mathematics, in the branch of complex analysis, a holomorphic function on an open subset of the complex plane is called univalent if it is injective. Examples The function f \colon z \mapsto 2z + z^2 is univalent in the open unit disc, as f(z) = f(w) implies that f(z) - f(w) = (z-w)(z+w+2) = 0. As the second factor is non-zero in the open unit disc, f must be injective. Basic properties One can prove that if G and \Omega are two open connected sets in the complex plane, and :f: G \to \Omega is a univalent function such that f(G) = \Omega (that is, f is surjective), then the derivative of f is never zero, f is invertible, and its inverse f^ is also holomorphic. More, one has by the chain rule :(f^)'(f(z)) = \frac for all z in G. Comparison with real functions For real analytic functions, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function :f: (-1, 1) \to (-1, 1) \, given by ''ƒ''(''x' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical branches in mathematics, with roots in the 18th century and just prior. Important mathematicians associated with comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]