Global Anomaly
   HOME
*





Global Anomaly
In theoretical physics, a global anomaly is a type of anomaly: in this particular case, it is a quantum effect that invalidates a large gauge transformation that would otherwise be preserved in the classical theory. This leads to an inconsistency in the theory because the space of configurations which is being integrated over in the functional integral involves both a configuration and the same configuration after a large gauge transformation has acted upon it and the sum of all such contributions is zero and the space of configurations cannot be split into connected components for which the integral is nonzero. Alternatively, the existence of a global anomaly implies that the measure of Feynman's functional integral cannot be defined globally. The adjective "global" refers to the properties of a group that are detectable via large gauge or diffeomorphism transformations, but are not detectable locally via infinitesimal transformations. For example, all features of a discrete gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doublet State
In quantum mechanics, a doublet is a composite quantum state of a system with an effective spin of 1/2, such that there are two allowed values of the spin component, −1/2 and +1/2. Quantum systems with two possible states are sometimes called two-level systems. Essentially all occurrences of doublets in nature arise from rotational symmetry; spin 1/2 is associated with the fundamental representation of the Lie group SU(2). History and applications The term "doublet" dates back to the 19th century, when it was observed that certain spectral lines of an ionized, excited gas would split into two under the influence of a strong magnetic field, in an effect known as the anomalous Zeeman effect. Such spectral lines were observed not only in the laboratory, but also in astronomical spectroscopy observations, allowing astronomers to deduce the existence of, and measure the strength of magnetic fields around the sun, stars and galaxies. Conversely, it was the observation of doublets in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Worldsheet
In string theory, a worldsheet is a two-dimensional manifold which describes the embedding of a string in spacetime. The term was coined by Leonard Susskind as a direct generalization of the world line concept for a point particle in special and general relativity. The type of string, the geometry of the spacetime in which it propagates, and the presence of long-range background fields (such as gauge fields) are encoded in a two-dimensional conformal field theory defined on the worldsheet. For example, the bosonic string in 26 dimensions has a worldsheet conformal field theory consisting of 26 free scalar bosons. Meanwhile, a superstring worldsheet theory in 10 dimensions consists of 10 free scalar fields and their fermionic superpartners. Mathematical formulation Bosonic string We begin with the classical formulation of the bosonic string. First fix a d-dimensional flat spacetime (d-dimensional Minkowski space), M, which serves as the ambient space for the string. A w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Diffeomorphism
In mathematics and theoretical physics, a large diffeomorphism is an equivalence class of diffeomorphisms under the equivalence relation where diffeomorphisms that can be continuously connected to each other are in the same equivalence class. For example, a two-dimensional real torus has a SL(2,Z) group of large diffeomorphisms by which the one-cycles a,b of the torus are transformed into their integer linear combinations. This group of large diffeomorphisms is called the modular group. More generally, for a surface ''S'', the structure of self-homeomorphisms up to homotopy is known as the mapping class group. It is known (for compact, orientable ''S'') that this is isomorphic with the automorphism group of the fundamental group of ''S''. This is consistent with the genus 1 case, stated above, if one takes into account that then the fundamental group is ''Z''2, on which the modular group acts as automorphisms (as a subgroup of index 2 in all automorphisms, since the orientation m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Anomaly
In theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields. The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with ''diffeomorphism anomaly'', since general covariance is symmetry under coordinate reparametrization; i.e. diffeomorphism. General covariance is the basis of general relativity, the classical theory of gravitation. Moreover, it is necessary for the consistency of any theory of quantum gravity, since it is required in order to cancel unphysical degrees of freedom with a negative norm, namely gravitons polarized along the time direction. Therefore, all gravitational anomalies must cancel out. The anomaly usually appears as a Feynman diagram with a chiral fer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Invariance
In theoretical physics, modular invariance is the invariance under the group such as SL(2,Z) of large diffeomorphisms of the torus. The name comes from the classical name modular group of this group, as in modular form theory. In string theory, modular invariance is an additional requirement for one-loop diagrams. This helps in getting rid of some global anomalies such as the gravitational anomalies. Equivalently, in two-dimensional conformal field theory A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal fie ... the torus partition function must be invariant under the modular group SL(2,Z). String theory Symmetry {{theoretical-physics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grand Unified Theory
A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct. Experiments have confirmed that at high energy the electromagnetic interaction and weak interaction unify into a single electroweak interaction. GUT models predict that at even higher energy, the strong interaction and the electroweak interaction will unify into a single electronuclear interaction. This interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. Unifying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Anomaly (physics)
In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken (and energy dissipation rate finite) at the limit of vanishing viscosity. In quantum theory, the first anomaly discovered was the Adler–Bell–Jackiw anomaly, wherein the axial vector current is conserved as a classical symmetry of electrodynamics, but is broken by the quantized theory. The relationship of this anomaly to the Atiyah–Singer index theorem was one of the celebrated achievements of the theory. Technically, an anomalous symmetry in a quantum theory is a symmetry of the action, but not of the measure, and so not of the partition fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chiral Fermion
In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation. Unlike vectors and tensors, a spinor transforms to its negative when the space is continuously rotated through a complete turn from 0° to 360° (see picture). This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of sections of vector bundles – in the case of the exterior algebra bundle of the cotangent bundle, they thus become "square roots" of differential forms). It is also possible to associate a substantially similar notion of spinor to Minkowski space, in which case the Lorentz transformations of special relativity play the role of rotations. Spinors were introduced in geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anomaly (physics)
In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken (and energy dissipation rate finite) at the limit of vanishing viscosity. In quantum theory, the first anomaly discovered was the Adler–Bell–Jackiw anomaly, wherein the axial vector current is conserved as a classical symmetry of electrodynamics, but is broken by the quantized theory. The relationship of this anomaly to the Atiyah–Singer index theorem was one of the celebrated achievements of the theory. Technically, an anomalous symmetry in a quantum theory is a symmetry of the action, but not of the measure, and so not of the partition fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yang–Mills Theory
In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(''N''), or more generally any compact, reductive Lie algebra. Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. U(1) × SU(2)) as well as quantum chromodynamics, the theory of the strong force (based on SU(3)). Thus it forms the basis of our understanding of the Standard Model of particle physics. History and theoretical description In 1953, in a private correspondence, Wolfgang Pauli formulated a six-dimensional theory of Einstein's field equations of general relativity, extending the five-dimensional theory of Kaluza, Klein, Fock and others to a higher-dimensional internal space. However, there is no evidence that Pauli developed the Lagrangian of a gauge field or the quantization of it. Because Pauli found that his theory "lead ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]