HOME



picture info

Geology Applications Of Fourier Transform Infrared Spectroscopy
Fourier transform infrared spectroscopy (FTIR) is a spectroscopy, spectroscopic technique that has been used for analyzing the fundamental molecular structure of geological samples in recent decades. As in other infrared spectroscopy, the molecules in the sample are excited to a higher energy state due to the absorption of infrared (IR) radiation emitted from the IR source in the instrument, which results in Molecular vibration, vibrations of molecular bonds. The intrinsic physicochemical property of each particular molecule determines its corresponding IR absorbance peak, and therefore can provide characteristic fingerprints of functional groups (e.g. C-H, O-H, C=O, etc.). In geosciences research, FTIR is applied extensively in the following applications: * Analysing the trace amount of water content in Nominally anhydrous minerals (NAMs) * Measuring volatile inclusions in glass and minerals * Estimating the explosion potential in volcanic setting. * Analysing chemotaxonomy of ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kramers–Kronig Relations
The Kramers–Kronig relations, sometimes abbreviated as KK relations, are bidirectional mathematics, mathematical relations, connecting the real number, real and imaginary number, imaginary parts of any complex analysis, complex function that is analytic function, analytic in the upper half-plane. The relations are often used to compute the real part from the imaginary part (or vice versa) of linear response function, response functions in physical systems, because for stable systems, causal system, causality implies the condition of Analytic function, analyticity, and conversely, analyticity implies causality of the corresponding stable physical system. The relation is named in honor of Ralph Kronig and Hans Kramers. In mathematics, these relations are known by the names Sokhotski–Plemelj theorem and Hilbert transform. Formulation Let \chi(\omega) = \chi_1(\omega) + i \chi_2(\omega) be a complex function of the complex variable \omega, where \chi_1(\omega) and \chi_2(\omega) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nucleation
In thermodynamics, nucleation is the first step in the formation of either a new Phase (matter), thermodynamic phase or Crystal structure, structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of water is cooled (at atmospheric pressure) significantly below 0°C, it will tend to Freezing, freeze into ice, but volumes of water cooled only a few degrees below 0°C often stay completely free of ice for long periods (supercooling). At these conditions, nucleation of ice is either slow or does not occur at all. However, at lower temperatures nucleation is fast, and ice crystals appear after little or no delay. Nucleation is a common mechanism which generates first-order phase transitions, and it is the start of the process of forming a new thermodynamic phase. In contrast, new phas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schematic Diagram Of Water Concentration Profile
A schematic, or schematic diagram, is a designed representation of the elements of a system using abstract, graphic symbols rather than realistic pictures. A schematic usually omits all details that are not relevant to the key information the schematic is intended to convey, and may include oversimplified elements in order to make this essential meaning easier to grasp, as well as additional organization of the information. For example, a subway map intended for passengers may represent a subway station with a dot. The dot is not intended to resemble the actual station at all but aims to give the viewer information without unnecessary visual clutter. A schematic diagram of a chemical process uses symbols in place of detailed representations of the vessels, piping, valves, pumps, and other equipment that compose the system, thus emphasizing the functions of the individual elements and the interconnections among them and suppresses their physical details. In an electronic circuit d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchrotron Light Source
A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices ( undulators or wigglers) in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons. The major applications of synchrotron light are in condensed matter physics, materials science, biology and medicine. A large fraction of experiments using synchrotron light involve probing the structure of matter from the sub- nanometer level of electronic structure to the micrometer and millimeter levels important in m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Inclusions
image:Inclumed.gif, 250px, Trapped in a time capsule the same size as the diameter of a human hair, the ore-forming liquid in this inclusion was so hot and contained so much dissolved solids that when it cooled, crystals of halite, sylvite, gypsum, and hematite formed. As the samples cooled, the fluid shrank more than the surrounding mineral, and created a vapor bubble. Source: USGS A fluid inclusion is a bubble of liquid and/or gas that is trapped within a crystal. As minerals often form from a liquid or aqueous medium, tiny bubbles of that liquid can become trapped within the crystal, or along healed crystal fractures. These inclusions usually range in size from 0.01 mm to 1 mm and are only visible in detail by microscopic study, however specimens of fenster or skeletal quartz may include thin sheet-like inclusions that are many millimetres in length and breadth within their lamellar voids. These inclusions occur in a wide variety of environments. For example, they are f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Melt Inclusions
A melt inclusion is a small parcel or "blobs" of melt(s) that is entrapped by crystals growing in magma and eventually forming igneous rocks. In many respects it is analogous to a fluid inclusion within magmatic hydrothermal systems. Melt inclusions tend to be microscopic in size and can be analyzed for volatile contents that are used to interpret trapping pressures of the melt at depth. Characteristics Melt inclusions are generally small - most are less than 80 micrometres across (a micrometre is one thousandth of a millimeter, or about 0.00004 inches). They may contain a number of different constituents, including glass (which represents melt that has been quenched by rapid cooling), small crystals and a separate vapour-rich bubble. They occur in the crystals that can be found in igneous rocks, such as for example quartz, feldspar, olivine, pyroxene, nepheline, magnetite, perovskite and apatite. Melt inclusions can be found in both volcanic and plutonic rocks. In additio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Melt Inclusions 2
Melt may refer to: Science and technology * Melting, in physics, the process of heating a solid substance to a liquid * Melt (manufacturing), the semi-liquid material used in steelmaking and glassblowing * Melt (geology), magma ** Melt inclusions, a feature of igneous rock * Meltwater, water released from the thawing of snow and ice * MLT framework, a software test tool for the Media Lovin' Toolkit * Melt, one of the former names for the American social media app Gas. Music * Melt (band), a four-piece formed in New York City in 2017 * Melt! Festival, an annual music festival at Ferropolis in Germany Albums * ''Melt'' (Straitjacket Fits album), a 1990 album by Straitjacket Fits * ''Melt'' (Rascal Flatts album), a 2002 album by Rascal Flatts * ''Melt'', a 2018 extended play by Shaed, featuring the song "Trampoline" * ''Peter Gabriel'' (1980 album), a self-titled album also referred to as ''Melt'' Songs * "Melt!" (Siouxsie and the Banshees song), a 1982 song by Siouxsie and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Melting
Partial melting is the phenomenon that occurs when a rock is subjected to temperatures high enough to cause certain minerals to melt, but not all of them. Partial melting is an important part of the formation of all igneous rocks and some metamorphic rocks (e.g., migmatites), as evidenced by a multitude of geochemical, geophysical and petrological studies. The parameters that influence partial melting include the composition of the source rock, the pressure and temperature of the environment, and the availability of water or other fluids. As for the mechanisms that govern partial melting, the main are decompression melting and flux melting. Decompression melting occurs when rocks are brought from higher to lower pressure zones in the Earth's crust, lowering the melting point of its mineral components, thus generating a partial melt. Flux melting, on the other hand, occurs when water and other volatiles get in contact with hot rock, reducing the melting point of minerals, leading t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mantle (geology)
A mantle is a layer inside a planetary body bounded below by a Planetary core, core and above by a Crust (geology), crust. Mantles are made of Rock (geology), rock or Volatile (astrogeology), ices, and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone planetary differentiation, differentiation by density. All Terrestrial planet, terrestrial planets (including Earth), half of the giant planets, specifically ice giants, a number of Asteroid, asteroids, and some planetary Natural satellite, moons have mantles. Examples Earth The Earth's mantle is a layer of Silicate minerals, silicate rock between the Crust (geology), crust and the Earth's outer core, outer core. Its mass of 4.01 × 1024 kg is 67% the mass of the Earth. It has a thickness of making up about 84% of Earth's volume. It is predominantly solid, but in Geologic time scale, geological time it behaves as a Viscosity, visc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beer–Lambert Law
The Beer–Bouguer–Lambert (BBL) extinction law is an empirical relationship describing the attenuation in intensity of a radiation beam passing through a macroscopically homogenous medium with which it interacts. Formally, it states that the intensity of radiation decays exponentially in the absorbance of the medium, and that said absorbance is proportional to the length of beam passing through the medium, the concentration of interacting matter along that path, and a constant representing said matter's propensity to interact. The extinction law's primary application is in chemical analysis, where it underlies the Beer–Lambert law, commonly called Beer's law. Beer's law states that a beam of visible light passing through a chemical solution of fixed geometry experiences absorption proportional to the solute concentration. Other applications appear in physical optics, where it quantifies astronomical extinction and the absorption of photons, neutrons, or rarefied gas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotational–vibrational Spectroscopy
Rotational–vibrational spectroscopy is a branch of molecular spectroscopy that is concerned with Infrared spectroscopy, infrared and Raman spectroscopy, Raman spectra of molecules in the Gas, gas phase. Transitions involving changes in both Molecular vibration, vibrational and Rotational transition, rotational Quantum state, states can be abbreviated as rovibrational (or ro-vibrational) transitions. When such transitions emit or absorb photons (electromagnetic radiation), the frequency is proportional to the difference in energy levels and can be detected by certain kinds of spectroscopy. Since changes in rotational energy levels are typically much smaller than changes in vibrational energy levels, changes in rotational state are said to give fine structure to the vibrational spectrum. For a given vibrational transition, the same theoretical treatment as for pure rotational spectroscopy gives the rotational quantum numbers, energy levels, and selection rules. In linear and spheric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]