HOME
*





Generalised Whitehead Product
The Whitehead product is a mathematical construction introduced in . It has been a useful tool in determining the properties of spaces. The mathematical notion of space includes every shape that exists in our 3-dimensional world such as curves, surfaces, and solid figures. Since spaces are often presented by formulas, it is usually not possible to visually determine their geometric properties. Some of these properties are connectedness (is the space in one or several pieces), the number of holes the space has, the knottedness of the space, and so on. Spaces are then studied by assigning algebraic constructions to them. This is similar to what is done in high school analytic geometry whereby to certain curves in the plane (geometric objects) are assigned equations (algebraic constructions). The most common algebraic constructions are groups. These are sets such that any two members of the set can be combined to yield a third member of the set (subject to certain restrictions). In homo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitehead Product
In mathematics, the Whitehead product is a graded quasi-Lie algebra structure on the homotopy groups of a space. It was defined by J. H. C. Whitehead in . The relevant MSC code is: 55Q15, Whitehead products and generalizations. Definition Given elements f \in \pi_k(X), g \in \pi_l(X), the Whitehead bracket : ,g\in \pi_(X) is defined as follows: The product S^k \times S^l can be obtained by attaching a (k+l)-cell to the wedge sum :S^k \vee S^l; the attaching map is a map :S^ \stackrel S^k \vee S^l. Represent f and g by maps :f\colon S^k \to X and :g\colon S^l \to X, then compose their wedge with the attaching map, as :S^ \stackrel S^k \vee S^l \stackrel X . The homotopy class of the resulting map does not depend on the choices of representatives, and thus one obtains a well-defined element of :\pi_(X). Grading Note that there is a shift of 1 in the grading (compared to the indexing of homotopy groups), so \pi_k(X) has degree (k-1); equivalently, L_k = \p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilton's Theorem
In algebraic topology, Hilton's theorem, proved by , states that the loop space of a wedge of spheres is homotopy-equivalent to a product of loop spaces of spheres. showed more generally that the loop space of the suspension of a wedge of spaces can be written as an infinite product of loop spaces of suspensions of smash product In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) (''X,'' ''x''0) and (''Y'', ''y''0) is the quotient of the product space ''X'' × ''Y'' under the ide ...s. References * * 1955 in mathematics Theorems in algebraic topology {{Topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after the society's first president), at 57–5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Illinois Journal Of Mathematics
The ''Illinois Journal of Mathematics'' is a quarterly peer-reviewed scientific journal of mathematics published by Duke University Press on behalf of the University of Illinois. It was established in 1957 by Reinhold Baer, Joseph L. Doob, Abraham Taub, George W. Whitehead, and Oscar Zariski. The journal published the proof of the four color theorem by Kenneth Appel and Wolfgang Haken, which featured a then-unusual tabulation of computer-generated cases. Abstracting and indexing The journal is indexed and abstracted in: *MathSciNet *Scopus *zbMATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure mathematics, pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Informa ... References External links * Publications established in 1957 Mathematics journals University of Illinois Urbana-Champaign publications Quarterly journals English-language journ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michigan Mathematical Journal
The ''Michigan Mathematical Journal'' (established 1952) is published by the mathematics department at the University of Michigan. An important early editor for the Journal was George Piranian. Historically, the Journal has been published a small number of times in a given year (currently four), in all areas of mathematics. The current Managing Editor is Mircea Mustaţă Mircea is a Romanian masculine given name, a form of the South Slavic name Mirče (Мирче) that derives from the Slavic word ''mir'', meaning 'peace'. It may refer to: People Princes of Wallachia * Mircea I of Wallachia (1355–1418), a .... References External links * Mathematics journals University of Michigan 1952 establishments in Michigan Publications established in 1952 {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pacific Journal Of Mathematics
The Pacific Journal of Mathematics is a mathematics research journal supported by several universities and research institutes, and currently published on their behalf by Mathematical Sciences Publishers, a non-profit academic publishing organisation, and the University of California, Berkeley. It was founded in 1951 by František Wolf and Edwin F. Beckenbach and has been published continuously since, with five two-issue volumes per year and 12 issues per year. Full-text PDF versions of all journal articles are available on-line via the journal's website with a subscription. The journal is incorporated as a 501(c)(3) organization. References

Mathematics journals Publications established in 1951 Mathematical Sciences Publishers academic journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eilenberg–MacLane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. If n > 1 then ''G'' must be abelian. Such a space exists, is a CW-complex, and is unique up to a weak homotopy equivalence, therefore any such space is often just called K(G,n). The name is derived from Samuel Eilenberg and Saunders Mac Lane, who introduced such spaces in the late 1940s. As such, an Eilenberg–MacLane space is a special k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eckmann–Hilton Duality
In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in category theory with the idea of the opposite category. A significantly deeper form argues that the fact that the dual notion of a limit is a colimit allows us to change the Eilenberg–Steenrod axioms for homology to give axioms for cohomology. It is named after Beno Eckmann and Peter Hilton. Discussion An example is given by currying, which tells us that for any object X, a map X \times I \to Y is the same as a map X \to Y^I, where Y^I is the exponential object, given by all maps from I to Y . In the case of topological spaces, if we take I to be the unit interval, this leads to a duality between X \times I and Y^I, which then gives a duality between the reduced suspension \Sigma X, which is a quotient of X \times I, and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Space
In topology, a branch of mathematics, the loop space Ω''X'' of a pointed topological space ''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed circle ''S''1 to ''X'', equipped with the compact-open topology. Two loops can be multiplied by concatenation. With this operation, the loop space is an ''A''∞-space. That is, the multiplication is homotopy-coherently associative. The set of path components of Ω''X'', i.e. the set of based-homotopy equivalence classes of based loops in ''X'', is a group, the fundamental group ''π''1(''X''). The iterated loop spaces of ''X'' are formed by applying Ω a number of times. There is an analogous construction for topological spaces without basepoint. The free loop space of a topological space ''X'' is the space of maps from the circle ''S''1 to ''X'' with the compact-open topology. The free loop space of ''X'' is often denoted by \mathcalX. As a functor, the free loop space construction is righ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moore Space (algebraic Topology)
In algebraic topology, a branch of mathematics, Moore space is the name given to a particular type of topological space that is the homology analogue of the Eilenberg–Maclane spaces of homotopy theory, in the sense that it has only one nonzero homology (rather than homotopy) group. Formal definition Given an abelian group ''G'' and an integer ''n'' ≥ 1, let ''X'' be a CW complex such that :H_n(X) \cong G and :\tilde_i(X) \cong 0 for ''i'' ≠ ''n'', where H_n(X) denotes the ''n''-th singular homology group of ''X'' and \tilde_i(X) is the ''i''-th reduced homology group. Then ''X'' is said to be a Moore space. Also, ''X'' is by definition simply-connected if ''n''>1. Examples *S^n is a Moore space of \mathbb for n\geq 1. *\mathbb^2 is a Moore space of \mathbb/2\mathbb for n=1. See also * Eilenberg–MacLane space In mathematics, specifically algebraic topology, an Eilenberg–MacLane space Saunders Mac Lane originally spelt his name "MacLane" (without a space), and c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]