Gauss–Legendre Algorithm
   HOME
*





Gauss–Legendre Algorithm
The Gauss–Legendre algorithm is an algorithm to compute the digits of . It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of . However, it has some drawbacks (for example, it is computer memory-intensive) and therefore all record-breaking calculations for many years have used other methods, almost always the Chudnovsky algorithm. For details, see Chronology of computation of . The method is based on the individual work of Carl Friedrich Gauss (1777–1855) and Adrien-Marie Legendre (1752–1833) combined with modern algorithms for multiplication and square roots. It repeatedly replaces two numbers by their arithmetic and geometric mean, in order to approximate their arithmetic-geometric mean. The version presented below is also known as the Gauss–Euler, Brent–Salamin (or Salamin–Brent) algorithm; it was independently discovered in 1975 by Richard Brent and Eugene Salamin. It was used to compute the first 206,1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Brent (scientist)
Richard Peirce Brent is an Australian mathematician and computer scientist. He is an emeritus professor at the Australian National University. From March 2005 to March 2010 he was a Federation Fellow at the Australian National University. His research interests include number theory (in particular factorisation), random number generators, computer architecture, and analysis of algorithms. In 1973, he published a root-finding algorithm (an algorithm for solving equations numerically) which is now known as Brent's method. In 1975 he and Eugene Salamin independently conceived the Salamin–Brent algorithm, used in high-precision calculation of \pi. At the same time, he showed that all the elementary functions (such as log(''x''), sin(''x'') etc.) can be evaluated to high precision in the same time as \pi (apart from a small constant factor) using the arithmetic-geometric mean of Carl Friedrich Gauss. In 1979 he showed that the first 75 million complex zeros of the Rieman ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Integral
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function which can be expressed in the form f(x) = \int_^ R \left(t, \sqrt \right) \, dt, where is a rational function of its two arguments, is a polynomial of degree 3 or 4 with no repeated roots, and is a constant. In general, integrals in this form cannot be expressed in terms of elementary functions. Exceptions to this general rule are when has repeated roots, or when contains no odd powers of or if the integral is pseudo-elliptic. However, with the appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legend ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Iteration
Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. In mathematics and computer science, iteration (along with the related technique of recursion) is a standard element of algorithms. Mathematics In mathematics, iteration may refer to the process of iterating a function, i.e. applying a function repeatedly, using the output from one iteration as the input to the next. Iteration of apparently simple functions can produce complex behaviors and difficult problems – for examples, see the Collatz conjecture and juggler sequences. Another use of iteration in mathematics is in iterative methods which are used to produce approximate numerical solutions to certain mathematical problems. Newton's method is an example of an iterative method. Manual calculation of a number's square root is a co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Convergence
In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence (x_n) that converges to x^* is said to have ''order of convergence'' q \geq 1 and ''rate of convergence'' \mu if : \lim _ \frac=\mu. The rate of convergence \mu is also called the ''asymptotic error constant''. Note that this terminology is not standardized and some authors will use ''rate'' where this article uses ''order'' (e.g., ). In practice, the rate and order of convergence provide useful insights when using iterative methods for calculating numerical approximations. If the order of convergence is higher, then typically fewer iterations are necessary to yield a useful approximation. Strictly speaking, however, the asymptotic behavior of a sequence does not give conclusive information about any finite part of the sequence. Similar concepts are used for discretization methods. The solutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borwein's Algorithm
In mathematics, Borwein's algorithm is an algorithm devised by Jonathan Borwein, Jonathan and Peter Borwein to calculate the value of . They devised several other algorithms. They published the book ''Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity''. Ramanujan–Sato series These two are examples of a Ramanujan–Sato series. The related Chudnovsky algorithm uses a discriminant with class number 1. Class number 2 (1989) Start by setting : \begin A & = 212175710912 \sqrt + 1657145277365 \\ B & = 13773980892672 \sqrt + 107578229802750 \\ C & = \left(5280\left(236674+30303\sqrt\right)\right)^3 \end Then :\frac = 12\sum_^\infty \frac Each additional term of the partial sum yields approximately 25 digits. Class number 4 (1993) Start by setting : \begin A = & 63365028312971999585426220 \\ & + 28337702140800842046825600\sqrt \\ & + 384\sqrt \big(108917285511711782004674362123952091 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eugene Salamin (mathematician)
Eugene Salamin is a mathematician who discovered (independently with Richard Brent) the Salamin–Brent algorithm, used in high-precision calculation of pi. Eugene Salamin worked on alternatives to increase accuracy and minimize computational processes through the use of quaternions. Benefits may include: # the design of spatio-temporal databases; # numerical mathematical methods that traditionally prove unsuccessful due to buildup of computational error; # therefore, may be applied to applications involving genetic algorithms and evolutionary computation, in general. Publications See also * HAKMEM HAKMEM, alternatively known as AI Memo 239, is a February 1972 "memo" (technical report) of the MIT AI Lab containing a wide variety of hacks, including useful and clever algorithms for mathematical computation, some number theory and schematic ... References {{DEFAULTSORT:Salamin, Eugene 20th-century American mathematicians Year of birth missing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random-access Memory
Random-access memory (RAM; ) is a form of computer memory that can be read and changed in any order, typically used to store working Data (computing), data and machine code. A Random access, random-access memory device allows data items to be read (computer), read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media (such as hard disks, CD-RWs, DVD-RWs and the older Magnetic tape data storage, magnetic tapes and drum memory), where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement. RAM contains multiplexer, multiplexing and demultiplexing circuitry, to connect the data lines to the addressed storage for reading or writing the entry. Usually more than one bit of storage is accessed by the same address, and RAM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Mean
In mathematics, the geometric mean is a mean or average which indicates a central tendency of a set of numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometric mean is defined as the th root of the product of numbers, i.e., for a set of numbers , the geometric mean is defined as :\left(\prod_^n a_i\right)^\frac = \sqrt /math> or, equivalently, as the arithmetic mean in logscale: :\exp For instance, the geometric mean of two numbers, say 2 and 8, is just the square root of their product, that is, \sqrt = 4. As another example, the geometric mean of the three numbers 4, 1, and 1/32 is the cube root of their product (1/8), which is 1/2, that is, \sqrt = 1/2. The geometric mean applies only to positive numbers. The geometric mean is often used for a set of numbers whose values are meant to be multiplied together or are exponential in nature, such as a set of growth figures: values of the human population or inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetic Mean
In mathematics and statistics, the arithmetic mean ( ) or arithmetic average, or just the ''mean'' or the ''average'' (when the context is clear), is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results of an experiment or an observational study, or frequently a set of results from a survey. The term "arithmetic mean" is preferred in some contexts in mathematics and statistics, because it helps distinguish it from other means, such as the geometric mean and the harmonic mean. In addition to mathematics and statistics, the arithmetic mean is used frequently in many diverse fields such as economics, anthropology and history, and it is used in almost every academic field to some extent. For example, per capita income is the arithmetic average income of a nation's population. While the arithmetic mean is often used to report central tendencies, it is not a robust statistic, meaning that it is greatly influe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]