HOME
*





Gauss–Jacobi Quadrature
In numerical analysis, Gauss–Jacobi quadrature (named after Carl Friedrich Gauss and Carl Gustav Jacob Jacobi) is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form : \int_^1 f(x) (1 - x)^\alpha (1 + x)^\beta \,dx where ƒ is a smooth function on and . The interval can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with . Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes . More generally, the special case turns Jacobi polynomials into Gegenbauer polynomials, in which case the technique is sometimes called Gauss–Gegenbauer quadrature. Gauss–Jacobi quadrature uses as the weight function. The corresponding sequence of orthogonal polynomials consist of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes referred to as the ''Princeps mathematicorum'' () and "the greatest mathematician since antiquity", Gauss had an exceptional influence in many fields of mathematics and science, and he is ranked among history's most influential mathematicians. Also available at Retrieved 23 February 2014. Comprehensive biographical article. Biography Early years Johann Carl Friedrich Gauss was born on 30 April 1777 in Brunswick (Braunschweig), in the Duchy of Brunswick-Wolfenbüttel (now part of Lower Saxony, Germany), to poor, working-class parents. His mother was illiterate and never recorded the date of his birth, remembering only that he had been born on a Wednesday, eight days before the Feast of the Ascension (which occurs 39 days after Easter). Ga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carl Gustav Jacob Jacobi
Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occasionally written as Carolus Gustavus Iacobus Iacobi in his Latin books, and his first name is sometimes given as Karl. Jacobi was the first Jewish mathematician to be appointed professor at a German university. Biography Jacobi was born of Ashkenazi Jewish parentage in Potsdam on 10 December 1804. He was the second of four children of banker Simon Jacobi. His elder brother Moritz von Jacobi would also become known later as an engineer and physicist. He was initially home schooled by his uncle Lehman, who instructed him in the classical languages and elements of mathematics. In 1816, the twelve-year-old Jacobi went to the Potsdam Gymnasium, where students were taught all the standard subjects: classical languages, history, philology, mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Quadrature
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to ''quadrature'') is more or less a synonym for ''numerical integration'', especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature; others take ''quadrature'' to include higher-dimensional integration. The basic problem in numerical integration is to compute an approximate solution to a definite integral :\int_a^b f(x) \, dx to a given degree of accuracy. If is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Quadrature
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree or less by a suitable choice of the nodes and weights for . The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as , so the rule is stated as :\int_^1 f(x)\,dx \approx \sum_^n w_i f(x_i), which is exact for polynomials of degree or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if is well-approximated by a polynomial of degree or less on . The Gaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gauss–Legendre Quadrature
In numerical analysis, Gauss–Legendre quadrature is a form of Gaussian quadrature for approximating the definite integral of a function. For integrating over the interval , the rule takes the form: :\int_^1 f(x)\,dx \approx \sum_^n w_i f(x_i) where * ''n'' is the number of sample points used, * ''w''''i'' are quadrature weights, and * ''x''''i'' are the roots of the ''n''th Legendre polynomial. This choice of quadrature weights ''w''''i'' and quadrature nodes ''x''''i'' is the unique choice that allows the quadrature rule to integrate degree polynomials exactly. Many algorithms have been developed for computing Gauss–Legendre quadrature rules. The Golub–Welsch algorithm presented in 1969 reduces the computation of the nodes and weights to an eigenvalue problem which is solved by the QR algorithm. This algorithm was popular, but significantly more efficient algorithms exist. Algorithms based on the Newton–Raphson method are able to compute quadrature rules for significa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chebyshev–Gauss Quadrature
In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind: :\int_^ \frac \,dx and :\int_^ \sqrt g(x)\,dx. In the first case :\int_^ \frac \,dx \approx \sum_^n w_i f(x_i) where :x_i = \cos \left( \frac \pi \right) and the weight :w_i = \frac .Abramowitz, M & Stegun, I A, ''Handbook of Mathematical Functions'', 10th printing with corrections (1972), Dover, . Equation 25.4.38. In the second case :\int_^ \sqrt g(x)\,dx \approx \sum_^n w_i g(x_i) where :x_i = \cos \left( \frac \pi \right) and the weight : w_i = \frac \sin^2 \left( \frac \pi \right). \,Abramowitz, M & Stegun, I A, ''Handbook of Mathematical Functions'', 10th printing with corrections (1972), Dover, . Equation 25.4.40. See also *Chebyshev polynomials *Chebyshev nodes References External links Chebyshev-Gauss Quadraturefrom Wolfram MathWorld Gauss–Chebyshev type 1 quadraturean free software ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gegenbauer Polynomials
In mathematics, Gegenbauer polynomials or ultraspherical polynomials ''C''(''x'') are orthogonal polynomials on the interval minus;1,1with respect to the weight function (1 − ''x''2)''α''–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer. Characterizations File:Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg, Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D File:Mplwp gegenbauer Cn05a1.svg, Gegenbauer polynomials with ''α''=1 File:Mplwp gegenbauer Cn05a2.svg, Gegenbauer polynomials with ''α''=2 File:Mplwp gegenbauer Cn05a3.svg, Gegenbauer polynomials with ''α''=3 File:Gegenbauer polynomials.gif, An animation showing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonality, orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and was pursued by Andrey Markov, A. A. Markov and Thomas Joannes Stieltjes, T. J. Stieltjes. They appear in a wide variety of fields: numerical analysis (Gaussian quadrature, quadrature rules), probability theory, representation theory (of Lie group, Lie groups, quantum group, quantum groups, and re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Polynomials
In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(x) are a class of Classical orthogonal polynomials, classical orthogonal polynomials. They are orthogonal with respect to the weight (1-x)^\alpha(1+x)^\beta on the interval [-1,1]. The Gegenbauer polynomials, and thus also the Legendre polynomials, Legendre, Zernike polynomials, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The definition is in IV.1; the differential equation – in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. Definitions Via the hypergeometric function The Jacobi polynomials are defined via the hypergeometric function as follows: :P_n^(z)=\frac\,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac(1-z)\right), where (\alpha+1)_n is Pochhammer symbol, Pochhammer's symbol (for the rising factorial). In this case, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer , \Gamma(n) = (n-1)!\,. Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: \Gamma(z) = \int_0^\infty t^ e^\,dt, \ \qquad \Re(z) > 0\,. The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles. The gamma function has no zeroes, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential function: \Gamma(z) = \mathcal M \ (z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]