HOME
*





Galois Descent
In mathematics, given a ''G''-torsor ''X'' → ''Y'' and a stack ''F'', the descent along torsors says there is a canonical equivalence between ''F''(''Y''), the category of ''Y''-points and ''F''(''X'')''G'', the category of ''G''-equivariant ''X''-points. It is a basic example of descent, since it says the "equivariant data" (which is an additional data) allows one to "descend" from ''X'' to ''Y''. When ''G'' is the Galois group of a finite Galois extension ''L''/''K'', for the ''G''-torsor \operatorname L \to \operatorname K, this generalizes classical Galois descent (cf. field of definition In mathematics, the field of definition of an algebraic variety ''V'' is essentially the smallest field to which the coefficients of the polynomials defining ''V'' can belong. Given polynomials, with coefficients in a field ''K'', it may not be ...). For example, one can take ''F'' to be the stack of quasi-coherent sheaves (in an appropriate topology). Then ''F''(''X'')''G'' consists of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsor
In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-empty set ''X'' on which ''G'' acts freely and transitively (meaning that, for any ''x'', ''y'' in ''X'', there exists a unique ''g'' in ''G'' such that , where · denotes the (right) action of ''G'' on ''X''). An analogous definition holds in other categories, where, for example, *''G'' is a topological group, ''X'' is a topological space and the action is continuous, *''G'' is a Lie group, ''X'' is a smooth manifold and the action is smooth, *''G'' is an algebraic group, ''X'' is an algebraic variety and the action is regular. Definition If ''G'' is nonabelian then one must distinguish between left and right torsors according to whether the action is on the left or right. In this article, we will use right actions. To state the defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with pullbacks; fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that the general language for describing these coverings is that of a Grothendieck topology. Thus a stack ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descent (mathematics)
In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. Descent of vector bundles The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose ''X'' is a topological space covered by open sets ''Xi''. Let ''Y'' be the disjoint union of the ''Xi'', so that there is a natural mapping :p: Y \rightarrow X. We think of ''Y'' as 'above' ''X'', with the ''Xi'' projection 'down' onto ''X''. With this language, ''descent'' implies a vector bundle on ''Y ''(so, a bundle given on each ''Xi''), and our concern is to 'glue' those bundles ''Vi'', to make a single bundle ''V'' on X. What we mean is that ''V'' should, when restricted to ''Xi'', give back ''Vi'', up to a bundle isomorphism. The data needed is then this: on each overlap :X_, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ''F''. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. A result of Emil Artin allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension. Characterization of Galois extensions An important theorem of Emil Artin states that for a finite extension E/F, each of the following statements is equivalent to the statement that E/F is Galois: *E/F is a normal extension and a separable extension. *E is a splitting field of a separable polynomial with coefficients in F. *, \!\operatorname(E/F), = :F that is, the number o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Of Definition
In mathematics, the field of definition of an algebraic variety ''V'' is essentially the smallest field to which the coefficients of the polynomials defining ''V'' can belong. Given polynomials, with coefficients in a field ''K'', it may not be obvious whether there is a smaller field ''k'', and other polynomials defined over ''k'', which still define ''V''. The issue of field of definition is of concern in diophantine geometry. Notation Throughout this article, ''k'' denotes a field. The algebraic closure of a field is denoted by adding a superscript of "alg", e.g. the algebraic closure of ''k'' is ''k''alg. The symbols Q, R, C, and F''p'' represent, respectively, the field of rational numbers, the field of real numbers, the field of complex numbers, and the finite field containing ''p'' elements. Affine ''n''-space over a field ''F'' is denoted by A''n''(''F''). Definitions for affine and projective varieties Results and definitions stated below, for affine varieties, can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Sheaf
In mathematics, given an action \sigma: G \times_S X \to X of a group scheme ''G'' on a scheme ''X'' over a base scheme ''S'', an equivariant sheaf ''F'' on ''X'' is a sheaf of \mathcal_X-modules together with the isomorphism of \mathcal_-modules :\phi: \sigma^* F \xrightarrow p_2^*F   that satisfies the cocycle condition: writing ''m'' for multiplication, :p_^* \phi \circ (1_G \times \sigma)^* \phi = (m \times 1_X)^* \phi. Notes on the definition On the stalk level, the cocycle condition says that the isomorphism F_ \simeq F_x is the same as the composition F_ \simeq F_ \simeq F_x; i.e., the associativity of the group action. The condition that the unit of the group acts as the identity is also a consequence: apply (e \times e \times 1)^*, e: S \to G to both sides to get (e \times 1)^* \phi \circ (e \times 1)^* \phi = (e \times 1)^* \phi and so (e \times 1)^* \phi is the identity. Note that \phi is an additional data; it is "a lift" of the action of ''G'' on ''X'' to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]