Functionally Graded Element
   HOME
*





Functionally Graded Element
In materials science and mathematics, functionally graded elements are elements used in finite element analysis. They can be used to describe a functionally graded material. See also * Graded (mathematics) In mathematics, the term “graded” has a number of meanings, mostly related: In abstract algebra, it refers to a family of concepts: * An algebraic structure X is said to be I-graded for an index set I if it has a gradation or grading, i.e. a d ... {{mathapplied-stub Finite element method Materials science ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Element Analysis
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functionally Graded Material
In materials science Functionally Graded Materials (FGMs) may be characterized by the variation in composition and structure gradually over volume, resulting in corresponding changes in the properties of the material. The materials can be designed for specific function and applications. Various approaches based on the bulk (particulate processing), preform processing, layer processing and melt processing are used to fabricate the functionally graded materials. History The concept of FGM was first considered in Japan in 1984 during a space plane project, where a combination of materials used would serve the purpose of a thermal barrier capable of withstanding a surface temperature of 2000 K and a temperature gradient of 1000 K across a 10 mm section. In recent years this concept has become more popular in Europe, particularly in Germany. A transregional collaborative research center (SFB Transregio) is funded since 2006 in order to exploit the potential of grading monomateri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graded (mathematics)
In mathematics, the term “graded” has a number of meanings, mostly related: In abstract algebra, it refers to a family of concepts: * An algebraic structure X is said to be I-graded for an index set I if it has a gradation or grading, i.e. a decomposition into a direct sum X = \bigoplus_ X_i of structures; the elements of X_i are said to be "homogeneous of degree ''i'' ". ** The index set I is most commonly \N or \Z, and may be required to have extra structure depending on the type of X. ** Grading by \Z_2 (i.e. \Z/2\Z) is also important; see e.g. signed set (the \Z_2-graded sets). ** The trivial (\Z- or \N-) gradation has X_0 = X, X_i = 0 for i \neq 0 and a suitable trivial structure 0. ** An algebraic structure is said to be doubly graded if the index set is a direct product of sets; the pairs may be called "bidegrees" (e.g. see Spectral sequence). * A I-graded vector space or graded linear space is thus a vector space with a decomposition into a direct sum V = \bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Element Method
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]