Fréchet Inequalities
   HOME
*





Fréchet Inequalities
In probabilistic logic, the Fréchet inequalities, also known as the Boole–Fréchet inequalities, are rules implicit in the work of George BooleBoole, G. (1854). ''An Investigation of the Laws of Thought, On Which Are Founded the Mathematical Theories of Logic and Probability.'' Walton and Maberly, London. See Boole's "major" and "minor" limits of a conjunction on page 299.Hailperin, T. (1986). ''Boole's Logic and Probability''. North-Holland, Amsterdam. and explicitly derived by Maurice FréchetFréchet, M. (1935). Généralisations du théorème des probabilités totales. ''Fundamenta Mathematicae'' 25: 379–387.Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. ''Annales de l'Université de Lyon. Section A: Sciences mathématiques et astronomie'' 9: 53–77. that govern the combination of probabilities about logical propositions or events logically linked together in conjunctions (AND operations) or disjunctions ( OR operations) as in Boolean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Logic
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals. Logical background There are numerous proposals for probabilistic logics. Very roughly, they can be categorized into two different classes: those logics that attempt to make a probabilistic extension to logical entailment, s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boole's Inequality
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one of a countable number of events in terms of the individual probabilities of the events. Boole's inequality is named for its discoverer George Boole. Formally, for a countable set of events ''A''1, ''A''2, ''A''3, ..., we have :\left(\bigcup_^ A_i \right) \le \sum_^ (A_i). In measure-theoretic terms, Boole's inequality follows from the fact that a measure (and certainly any probability measure) is ''σ''- sub-additive. Proof Proof using induction Boole's inequality may be proved for finite collections of n events using the method of induction. For the n=1 case, it follows that :\mathbb P(A_1) \le \mathbb P(A_1). For the case n, we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable State
In quantum mechanics, separable states are quantum states belonging to a composite space that can be factored into individual states belonging to separate subspaces. A state is said to be entangled if it is not separable. In general, determining if a state is separable is not straightforward and the problem is classed as NP-hard. Separability of bipartite systems Consider first composite states with two degrees of freedom, referred to as ''bipartite states''. By a postulate of quantum mechanics these can be described as vectors in the tensor product space H_1\otimes H_2. In this discussion we will focus on the case of the Hilbert spaces H_1 and H_2 being finite-dimensional. Pure states Let \_^n\subset H_1 and \_^m \subset H_2 be orthonormal bases for H_1 and H_2, respectively. A basis for H_1 \otimes H_2 is then \, or in more compact notation \. From the very definition of the tensor product, any vector of norm 1, i.e. a pure state of the composite system, can be written a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather conditions at some future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc. Introduction A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by \Omega, is the set of all possible outcomes of a random phe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modus Ponens
In propositional logic, ''modus ponens'' (; MP), also known as ''modus ponendo ponens'' (Latin for "method of putting by placing") or implication elimination or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "''P implies Q.'' ''P'' is true. Therefore ''Q'' must also be true." ''Modus ponens'' is closely related to another valid form of argument, ''modus tollens''. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence. Constructive dilemma is the disjunctive version of ''modus ponens''. Hypothetical syllogism is closely related to ''modus ponens'' and sometimes thought of as "double ''modus ponens''." The history of ''modus ponens'' goes back to antiquity. The first to explicitly describe the argument form ''modus ponens'' was Theophrastus. It, along with ''modus tollens'', is one of the standard patterns of inference that can be applied to d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Bounds Analysis
Probability bounds analysis (PBA) is a collection of methods of uncertainty propagation for making qualitative and quantitative calculations in the face of uncertainties of various kinds. It is used to project partial information about random variables and other quantities through mathematical expressions. For instance, it computes sure bounds on the distribution of a sum, product, or more complex function, given only sure bounds on the distributions of the inputs. Such bounds are called probability boxes, and constrain cumulative probability distributions (rather than densities or mass functions). This bounding approach permits analysts to make calculations without requiring overly precise assumptions about parameter values, dependence among variables, or even distribution shape. Probability bounds analysis is essentially a combination of the methods of standard interval analysis and classical probability theory. Probability bounds analysis gives the same answer as interval ana ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reliability Theory
Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time. The reliability function is theoretically defined as the probability of success at time t, which is denoted R(t). This probability is estimated from detailed (physics of failure) analysis, previous data sets or through reliability testing and reliability modelling. Availability, testability, maintainability and maintenance, repair and operations, maintenance are often defined as a part of "reliability engineering" in reliability programs. Reliability often plays the key role in the cost-effectiveness of systems. Reliability engineering deals with the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', (Vol 1), 3rd Ed, (1968), Wiley, . The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of zero (0) sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the table of mathematical symbols. Union of two sets The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, :A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot have duplicate elements, so the union of the sets and is . Multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersection (set Theory)
In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols. Definition The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The number 9 is in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]