Friedrich Hirzebruch
   HOME
*





Friedrich Hirzebruch
Friedrich Ernst Peter Hirzebruch ForMemRS (17 October 1927 – 27 May 2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure in his generation. He has been described as "the most important mathematician in Germany of the postwar period." Education Hirzebruch was born in Hamm, Westphalia in 1927. His father of the same name was a maths teacher. Hirzebruch studied at the University of Münster from 1945–1950, with one year at ETH Zürich. Career Hirzebruch then held a position at Erlangen, followed by the years 1952–54 at the Institute for Advanced Study in Princeton, New Jersey. After one year at Princeton University 1955–56, he was made a professor at the University of Bonn, where he remained, becoming director of the ''Max-Planck-Institut für Mathematik'' in 1981. More than 300 people gathered in celebration of his 80th birthday in Bonn in 2007. The Hirzebruch–Riemann–Roch theorem (1954) fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamm
Hamm (, Latin: ''Hammona'') is a city in North Rhine-Westphalia, Germany. It is located in the northeastern part of the Ruhr area. As of 2016 its population was 179,397. The city is situated between the A1 motorway and A2 motorway. Hamm railway station is an important hub for rail transport and renowned for its distinctive station building. History Coat of arms The coat of arms has been in use in its present form for about 750 years. It shows the markish chessboard ("märkischen Schachbalken") in red and silver on a golden field. Originally it was the founders' coat of arms, i. e. the Counts of Mark. The chessboard and the colours are often displayed in the coats of arms of further towns founded by that family line. Similarly, the colours of the city are red and white. Overview The name ''Ham'' means "corner" in the old Low German dialect spoken at that time. In the old times the name ''thom Hamme'' would be used, which evolved slowly into its modern form ''Hamm''. The name ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lothar Göttsche
Lothar Göttsche (born January 21, 1961 in Sonderburg, Denmark) is a German mathematician, known for his work in algebraic geometry. He is a research scientist at the International Centre for Theoretical Physics in Trieste, Italy. He is also editor for Geometry & Topology. Biography After studying mathematics at the University of Kiel, he received his Dr. rer. nat. under the direction of Friedrich Hirzebruch at the University of Bonn in 1989. Göttsche was invited as speaker to the International Congress of Mathematicians in Beijing in 2002. In 2012 he became a fellow of the American Mathematical Society. Work Göttsche received international acclaim with his formula for the generating function for the Betti numbers of the Hilbert scheme of points on an algebraic surface: :If S is a smooth surface over an algebraically closed field of characteristic 0, then the generating function for the motives of the Hilbert schemes of S can be expressed in terms of the motivic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fellow Of The Royal Society
Fellowship of the Royal Society (FRS, ForMemRS and HonFRS) is an award granted by the judges of the Royal Society of London to individuals who have made a "substantial contribution to the improvement of natural science, natural knowledge, including mathematics, engineering science, and medical science". Fellow, Fellowship of the Society, the oldest known scientific academy in continuous existence, is a significant honour. It has been awarded to many eminent scientists throughout history, including Isaac Newton (1672), Michael Faraday (1824), Charles Darwin (1839), Ernest Rutherford (1903), Srinivasa Ramanujan (1918), Albert Einstein (1921), Paul Dirac (1930), Winston Churchill (1941), Subrahmanyan Chandrasekhar (1944), Dorothy Hodgkin (1947), Alan Turing (1951), Lise Meitner (1955) and Francis Crick (1959). More recently, fellowship has been awarded to Stephen Hawking (1974), David Attenborough (1983), Tim Hunt (1991), Elizabeth Blackburn (1992), Tim Berners-Lee (2001), Venki R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cantor Medal
The Cantor medal of the Deutsche Mathematiker-Vereinigung is named in honor of Georg Cantor, the first president of the society. It is awarded at most every second year during the yearly meetings of the society. The prize winners are mathematicians who are associated with the German language. Prize winners * 1990 Karl Stein. * 1992 Jürgen MoserThe Georg Cantor Medal of the ''Deutsche Mathematiker-Vereinigung''
, , retrieved 5 June 2014.
* 1994

Albert Einstein Medal
The Albert Einstein Medal is an award presented by the Albert Einstein Society in Bern. First given in 1979, the award is presented to people for "scientific findings, works, or publications related to Albert Einstein" each year. Recipients Source:''Einstein Society * 2020: Event Horizon Telescope (EHT) scientific collaboration * 2019: Clifford Martin Will * 2018: Juan Martín Maldacena * 2017: LIGO Scientific Collaboration and the Virgo Collaboration * 2016: Alexei Yuryevich Smirnov * 2015: Stanley Deser and Charles Misner * 2014: Tom W. B. Kibble * 2013: Roy Kerr * 2012: Alain Aspect * 2011: Adam Riess, Saul Perlmutter * 2010: Hermann Nicolai * 2009: Kip Stephen Thorne * 2008: Beno Eckmann * 2007: Reinhard Genzel * 2006: Gabriele Veneziano * 2005: Murray Gell-Mann * 2004: Michel Mayor * 2003: George F. Smoot * 2001: Johannes Geiss, Hubert Reeves * 2000: Gustav Tammann * 1999: Friedrich Hirzebruch * 1998: Claude Nicollier * 1996: Thibault Damour * 1995: Chen Ning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lomonosov Gold Medal
The Lomonosov Gold Medal (russian: Большая золотая медаль имени М. В. Ломоносова ''Bol'shaya zolotaya medal' imeni M. V. Lomonosova''), named after Russian scientist and polymath Mikhail Lomonosov, is awarded each year since 1959 for outstanding achievements in the natural sciences and the humanities by the USSR Academy of Sciences and later the Russian Academy of Sciences (RAS). Since 1967, two medals are awarded annually: one to a Russian and one to a foreign scientist. It is the Academy's highest accolade. Recipients of Lomonosov Gold Medal __NOTOC__ 1959 * Pyotr Leonidovich Kapitsa: cumulatively, for works in physics of low temperatures. 1961 * Aleksandr Nikolaevich Nesmeyanov: accumulatively for works in chemistry. 1963 * Sin-Itiro Tomonaga (member of the Japanese academy of Sciences, president of the Scientific Council of Japan): for substantial scientific contributions to the development of physics. * Hideki Yukawa (member of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lobachevsky Medal
The Lobachevsky Prize, awarded by the Russian Academy of Sciences, and the Lobachevsky Medal, awarded by the Kazan State University, are mathematical awards in honor of Nikolai Ivanovich Lobachevsky. History The Lobachevsky Prize was established in 1896 by the Kazan Physical and Mathematical Society, in honor of Russian mathematician Nikolai Ivanovich Lobachevsky, who had been a professor at Kazan University, where he spent nearly his entire mathematical career. The prize was first awarded in 1897. Between the October revolution of 1917 and World War II the Lobachevsky Prize was awarded only twice, by the Kazan State University, in 1927 and 1937. In 1947, by a decree of the Council of Ministers of the USSR, the jurisdiction over awarding the Lobachevsky Prize was transferred to the USSR Academy of Sciences.B. N. Shapukov“On history of Lobachevskii Medal and Lobachevskii Prize”(in Russian), Tr. Geom. Semin., 24, Kazan Mathematical Society, Kazan, 2003, 11–16 The 1947 decree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wolf Prize In Mathematics
The Wolf Prize in Mathematics is awarded almost annually by the Wolf Foundation in Israel. It is one of the six Wolf Prizes established by the Foundation and awarded since 1978; the others are in Agriculture, Chemistry, Medicine, Physics and Arts. According to a reputation survey conducted in 2013 and 2014, the Wolf Prize in Mathematics is the third most prestigious international academic award in mathematics, after the Abel Prize and the Fields Medal. Until the establishment of the Abel Prize, it was probably the closest equivalent of a "Nobel Prize in Mathematics", since the Fields Medal is awarded every four years only to mathematicians under the age of 40. Laureates Laureates per country Below is a chart of all laureates per country (updated to 2022 laureates). Some laureates are counted more than once if have multiple citizenship. Notes See also * List of mathematics awards References External links * * * Israel-Wolf-Prizes 2015Jerusalempost Wolf Prizes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifolds
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Characteristic Classes
In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry. The notion of characteristic class arose in 1935 in the work of Eduard Stiefel and Hassler Whitney about vector fields on manifolds. Definition Let ''G'' be a topological group, and for a topological space X, write b_G(X) for the set of isomorphism classes of principal ''G''-bundles over X. This b_G is a contravariant functor from Top (the category of topological spaces and continuous functions) to Set (the category of sets and functions), sending a map f\colon X\to Y to the pullback operation f^*\colon b_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological K-theory
In mathematics, topological -theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological -theory is due to Michael Atiyah and Friedrich Hirzebruch. Definitions Let be a compact Hausdorff space and k= \R or \Complex. Then K_k(X) is defined to be the Grothendieck group of the commutative monoid of isomorphism classes of finite-dimensional -vector bundles over under Whitney sum. Tensor product of bundles gives -theory a commutative ring structure. Without subscripts, K(X) usually denotes complex -theory whereas real -theory is sometimes written as KO(X). The remaining discussion is focused on complex -theory. As a first example, note that the -theory of a point is the integers. This is because vector bundles over a point are trivial and thus classified by their rank and the Grothendieck group of the natur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hirzebruch Surface
In mathematics, a Hirzebruch surface is a ruled surface over the projective line. They were studied by . Definition The Hirzebruch surface \Sigma_n is the \mathbb^1-bundle, called a Projective bundle, over \mathbb^1 associated to the sheaf\mathcal\oplus \mathcal(-n).The notation here means: \mathcal(n) is the -th tensor power of the Serre twist sheaf \mathcal(1), the invertible sheaf or line bundle with associated Cartier divisor a single point. The surface \Sigma_0 is isomorphic to , and \Sigma_1 is isomorphic to blown up at a point so is not minimal. GIT quotient One method for constructing the Hirzebruch surface is by using a GIT quotient\Sigma_n = (\Complex^2-\)\times (\Complex^2-\)/(\Complex^*\times\Complex^*)where the action of \Complex^*\times\Complex^* is given by(\lambda, \mu)\cdot(l_0,l_1,t_0,t_1) = (\lambda l_0, \lambda l_1, \mu t_0,\lambda^\mu t_1)This action can be interpreted as the action of \lambda on the first two factors comes from the action of \Complex^* o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]