Friedrich Engel (mathematician)
   HOME
*





Friedrich Engel (mathematician)
Friedrich Engel (26 December 1861 – 29 September 1941) was a German mathematician. Engel was born in Lugau, Saxony, as the son of a Lutheran pastor. He attended the Universities of both Leipzig and Berlin, before receiving his doctorate from Leipzig in 1883. Engel studied under Felix Klein at Leipzig, and collaborated with Sophus Lie for much of his life. He worked at Leipzig (1885–1904), Greifswald (1904–1913), and Giessen (1913–1931). He died in Giessen. Engel was the co-author, with Sophus Lie, of the three volume work ''Theorie der Transformationsgruppen'' (publ. 1888–1893; tr., "Theory of transformation groups"). Engel was the editor of the collected works of Sophus Lie with six volumes published between 1922 and 1937; the seventh and final volume was prepared for publication but appeared almost twenty years after Engel's death. He was also the editor of the collected works of Hermann Grassmann. Engel translated the works of Nikolai Lobachevski from Russian i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lugau
Lugau is a town in the district Erzgebirgskreis, in the Free State of Saxony, Germany. It is situated 17 km east of Zwickau, and 17 km southwest of Chemnitz. The town has partnerships with Sallaumines (France) and Penzberg Penzberg (; Central Bavarian: ''Benschberg'') is a city (although some see it as a town) in the Weilheim-Schongau district, in Bavaria, Germany. It is located about 50 km south of Munich, and had a population of around 17,000 in 2020. A histo ... (Bavaria).Partnerschaften
Stadt Lugau


References

Erzgebirgskreis {{Erzgebirgskreis-geo-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Engel Subalgebra
In mathematics, an Engel subalgebra of a Lie algebra with respect to some element ''x'' is the subalgebra of elements annihilated by some power of ad ''x''. Engel subalgebras are named after Friedrich Engel. For finite-dimensional Lie algebras over infinite fields the minimal Engel subalgebras are the Cartan subalgebras. See also *Engel's theorem In representation theory, a branch of mathematics, Engel's theorem states that a finite-dimensional Lie algebra \mathfrak g is a nilpotent Lie algebra_if_and_only_if_for_each_X_\in_\mathfrak_g,_the_adjoint_representation_of_a_Lie_algebra.html" "ti ... References * {{algebra-stub Lie algebras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deutsche Mathematiker-Vereinigung
The German Mathematical Society (german: Deutsche Mathematiker-Vereinigung, DMV) is the main professional society of German mathematicians and represents German mathematics within the European Mathematical Society (EMS) and the International Mathematical Union (IMU). It was founded in 1890 in Bremen with the set theorist Georg Cantor as first president. Founding members included Georg Cantor, Felix Klein, Walther von Dyck, David Hilbert, Hermann Minkowski, Carl Runge, Rudolf Sturm, Hermann Schubert, and Heinrich Weber. The current president of the DMV is Ilka Agricola (2021–2022). Activities In honour of its founding president, Georg Cantor, the society awards the Cantor Medal. The DMV publishes two scientific journals, the ''Jahresbericht der DMV'' and ''Documenta Mathematica''. It also publishes a quarterly magazine for its membership the ''Mitteilungen der DMV''. The annual meeting of the DMV is called the ''Jahrestagung''; the DMV traditionally meets every four ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-Euclidean Geometry
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry. The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line and a point ''A'', which is not on , there is exactly one line through ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Paul Stäckel
Paul Gustav Samuel Stäckel (20 August 1862, Berlin – 12 December 1919, Heidelberg) was a German mathematician, active in the areas of differential geometry, number theory, and non-Euclidean geometry. In the area of prime number theory, he used the term ''twin prime'' (in its German form, "Primzahlzwilling") for the first time. After passing his ''Abitur'' in 1880 he studied mathematics and physics at the University of Berlin, but also listened to lectures on philosophy, psychology, education, and history. A year later he qualified for teaching in higher education and then taught at ''Gymnasien'' in Berlin. In 1885 he wrote his doctoral dissertation under Leopold Kronecker and Karl Weierstraß. In 1891 he completed his ''Habilitation'' at the University of Halle. Later he worked as a professor at the University of Königsberg (''außerordentlicher Professor'' from 1895 to 1897), the University of Kiel (''ordentlicher Professor'', 1897 to 1905), University of Hannover (1905 to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nikolai Lobachevski
Nikolai Ivanovich Lobachevsky ( rus, Никола́й Ива́нович Лобаче́вский, p=nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj, a=Ru-Nikolai_Ivanovich_Lobachevsky.ogg; – ) was a Russian mathematician and geometer, known primarily for his work on hyperbolic geometry, otherwise known as Lobachevskian geometry, and also for his fundamental study on Dirichlet integrals, known as the Lobachevsky integral formula. William Kingdon Clifford called Lobachevsky the "Copernicus of Geometry" due to the revolutionary character of his work. Biography Nikolai Lobachevsky was born either in or near the city of Nizhny Novgorod in the Russian Empire (now in Nizhny Novgorod Oblast, Russia) in 1792 to parents of Russian and Polish origin – Ivan Maksimovich Lobachevsky and Praskovia Alexandrovna Lobachevskaya.Victor J. Katz. ''A history of mathematics: Introduction''. Addison-Wesley. 2009. p. 842. Stephen Hawking. ''God Created the Integers: The Mathematical Bre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann Grassmann
Hermann Günther Grassmann (german: link=no, Graßmann, ; 15 April 1809 – 26 September 1877) was a German polymath known in his day as a linguist and now also as a mathematician. He was also a physicist, general scholar, and publisher. His mathematical work was little noted until he was in his sixties. Biography Hermann Grassmann was the third of 12 children of Justus Günter Grassmann, an ordained minister who taught mathematics and physics at the Stettin Gymnasium, where Hermann was educated. Grassmann was an undistinguished student until he obtained a high mark on the examinations for admission to Prussian universities. Beginning in 1827, he studied theology at the University of Berlin, also taking classes in classical languages, philosophy, and literature. He does not appear to have taken courses in mathematics or physics. Although lacking university training in mathematics, it was the field that most interested him when he returned to Stettin in 1830 after completing h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sophus Lie
Marius Sophus Lie ( ; ; 17 December 1842 – 18 February 1899) was a Norwegian mathematician. He largely created the theory of continuous symmetry and applied it to the study of geometry and differential equations. Life and career Marius Sophus Lie was born on 17 December 1842 in the small town of Nordfjordeid. He was the youngest of six children born to a Lutheran pastor named Johann Herman Lie, and his wife who came from a well-known Trondheim family. He had his primary education in the south-eastern coast of Moss, before attending high school at Oslo (known then as Christiania). After graduating from high school, his ambition towards a military career was dashed when the army rejected him due to his poor eyesight. It was then that he decided to enrol at the University of Christiania. Sophus Lie's first mathematical work, ''Repräsentation der Imaginären der Plangeometrie'', was published in 1869 by the Academy of Sciences in Christiania and also by ''Crelle's Journal''. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Felix Klein
Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group theory. His 1872 Erlangen program, classifying geometries by their basic symmetry groups, was an influential synthesis of much of the mathematics of the time. Life Felix Klein was born on 25 April 1849 in Düsseldorf, to Prussian parents. His father, Caspar Klein (1809–1889), was a Prussian government official's secretary stationed in the Rhine Province. His mother was Sophie Elise Klein (1819–1890, née Kayser). He attended the Gymnasium in Düsseldorf, then studied mathematics and physics at the University of Bonn, 1865–1866, intending to become a physicist. At that time, Julius Plücker had Bonn's professorship of mathematics and experimental physics, but by the time Klein became his assistant, in 1866, Plücker's interest wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doctorate
A doctorate (from Latin ''docere'', "to teach"), doctor's degree (from Latin ''doctor'', "teacher"), or doctoral degree is an academic degree awarded by universities and some other educational institutions, derived from the ancient formalism ''licentia docendi'' ("licence to teach"). In most countries, a research degree qualifies the holder to teach at university level in the degree's field or work in a specific profession. There are a number of doctoral degrees; the most common is the Doctor of Philosophy (PhD), awarded in many different fields, ranging from the humanities to scientific disciplines. In the United States and some other countries, there are also some types of technical or professional degrees that include "doctor" in their name and are classified as a doctorate in some of those countries. Professional doctorates historically came about to meet the needs of practitioners in a variety of disciplines. Many universities also award honorary doctorates to individuals d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]