Frege–Church Ontology
   HOME
*





Frege–Church Ontology
The Frege–Church ontology is an ontology, a theory of existence. Everything is considered as being in three categories, object ( referent, denotation), name, or concept (sense). The ontology was developed by Alonzo ChurchChurch, Alonzo. "A Formulation of the Logic of Sense and Denotation." In Structure, Method and Meaning: Essays in Honor of Henry M. Sheffer, edited by P. Henle, H. Kallen and S. Langer, 3–24. New York: Liberal Arts Press, 1951. based on ideas of Gottlob Frege Gottlob Frege. "Über Begriff und Gegenstand" in ''Vierteljahresschrift für wissenschaftliche Philosophie 16'': 192–205. Translation: "Concept and Object" in Geach and Black (1980). to resolve some paradoxes. The ontology is related to certain modal logics. Paradox of the name relationship *Suppose we are in the year 1995. Suppose Mary believes that Pluto (at the time still considered a planet) is the farthest planet from the sun. Because of Pluto’s irregular orbit, the orbit of Pluto crossed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ontology
In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality. Ontology addresses questions like how entities are grouped into categories and which of these entities exist on the most fundamental level. Ontologists often try to determine what the categories or highest kinds are and how they form a system of categories that encompasses classification of all entities. Commonly proposed categories include substances, properties, relations, states of affairs and events. These categories are characterized by fundamental ontological concepts, including particularity and universality, abstractness and concreteness, or possibility and necessity. Of special interest is the concept of ontological dependence, which determines whether the entities of a category exist on the most fundamental level. Disagreements within ontology are often about whether entities belonging to a certain category exist and, if so, how they ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proposition
In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, " meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the non-linguistic bearer of truth or falsity which makes any sentence that expresses it either true or false. While the term "proposition" may sometimes be used in everyday language to refer to a linguistic statement which can be either true or false, the technical philosophical term, which differs from the mathematical usage, refers exclusively to the non-linguistic meaning behind the statement. The term is often used very broadly and can also refer to various related concepts, both in the history of philosophy and in contemporary analytic philosophy. It can generally be used to refer to some or all of the following: The primary bearers of truth values (such as "true" and "false"); the objects of belief and other propositional attitudes (i.e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intensional Context
In any of several fields of study that treat the use of signs — for example, in linguistics, logic, mathematics, semantics, semiotics, and philosophy of language — an extensional context (or transparent context) is a syntax, syntactic environment in which a sub-sentential expression ''e'' can be replaced by an expression with the same Extension (semantics), extension and without affecting the truth-value of the sentence as a whole. Extensional contexts are contrasted with opaque contexts where truth-preserving substitutions are not possible. Take the case of Clark Kent, who is secretly Superman. Suppose that Lois Lane fell out of a window and Superman caught her. Thus the sentence "Superman caught Lois Lane" is true. Because this sentence is an extensional context, the sentence "Clark Kent caught Lois Lane" is also true. Anybody that Superman caught, Clark Kent caught. In opposition to extensional contexts are intensional contexts (which can involve Modal operator, modal operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Language
Ordinary language philosophy (OLP) is a philosophical methodology that sees traditional philosophical problems as rooted in misunderstandings philosophers develop by distorting or forgetting how words are ordinarily used to convey meaning in non-philosophical contexts. "Such 'philosophical' uses of language, on this view, create the very philosophical problems they are employed to solve." This approach typically involves eschewing philosophical "theories" in favor of close attention to the details of the use of everyday "ordinary" language. Its earliest forms are associated with the later work of Ludwig Wittgenstein and a number of mid-20th century philosophers who can be split into two main groups, neither of which could be described as an organized "school". In its earlier stages, contemporaries of Wittgenstein at Cambridge University such as Norman Malcolm, Alice Ambrose, Friedrich Waismann, Oets Kolk Bouwsma and Morris Lazerowitz started to develop ideas recognisable as o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Denote
In linguistics and philosophy, the denotation of an expression is its literal meaning. For instance, the English word "warm" denotes the property of being warm. Denotation is contrasted with other aspects of meaning including connotation. For instance, the word "warm" may evoke calmness or cosiness, but these associations are not part of the word's denotation. Similarly, an expression's denotation is separate from pragmatic inferences it may trigger. For instance, describing something as "warm" often implicates that it is not hot, but this is once again not part of the word's denotation. Denotation plays a major role in several fields. Within philosophy of language, denotation is studied as an important aspect of meaning. In mathematics and computer science, assignments of denotations are assigned to expressions are a crucial step in defining interpreted formal languages. The main task of formal semantics is to reverse engineer the computational system which assigns denotations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Function
In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional. Classical propositional logic is a truth-functional logic, in that every statement has exactly one truth value which is either true or false, and every logical connective is truth functional (with a correspondent truth table), thus every compound statement is a t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Falsity
Deception or falsehood is an act or statement that misleads, hides the truth, or promotes a belief, concept, or idea that is not true. It is often done for personal gain or advantage. Deception can involve dissimulation, propaganda and sleight of hand as well as distraction, camouflage or concealment. There is also self-deception, as in bad faith. It can also be called, with varying subjective implications, beguilement, deceit, bluff, mystification, ruse, or subterfuge. Deception is a major relational transgression that often leads to feelings of betrayal and distrust between relational partners. Deception violates relational rules and is considered to be a negative violation of expectations. Most people expect friends, relational partners, and even strangers to be truthful most of the time. If people expected most conversations to be untruthful, talking and communicating with others would require distraction and misdirection to acquire reliable information. A significant amount ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truth
Truth is the property of being in accord with fact or reality.Merriam-Webster's Online Dictionarytruth 2005 In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs, propositions, and declarative sentences. Truth is usually held to be the opposite of falsehood. The concept of truth is discussed and debated in various contexts, including philosophy, art, theology, and science. Most human activities depend upon the concept, where its nature as a concept is assumed rather than being a subject of discussion; these include most of the sciences, law, journalism, and everyday life. Some philosophers view the concept of truth as basic, and unable to be explained in any terms that are more easily understood than the concept of truth itself. Most commonly, truth is viewed as the correspondence of language or thought to a mind-independent world. This is called the correspondence theory of truth. Various theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variable (mathematics)
In mathematics, a variable (from Latin '' variabilis'', "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set. Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation. For example, the quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula. In mathematical logic, a ''variable'' is either a symbol representing an unspecified term of the theory (a meta-variable), or a basic object of the theory that is manipulated without referring to its possible intuitive interpretation. History In ancient works such as Euclid's ''Elements'', single letters refer to geometric points and shapes. In the 7th century, Brahmagupta used different colours to represent the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Object (philosophy)
An object is a philosophical term often used in contrast to the term '' subject''. A subject is an observer and an object is a thing observed. For modern philosophers like Descartes, consciousness is a state of cognition that includes the subject—which can never be doubted as only it can be the one who doubts—and some object(s) that may be considered as not having real or full existence or value independent of the subject who observes it. Metaphysical frameworks also differ in whether they consider objects existing independently of their properties and, if so, in what way. The pragmatist Charles S. Peirce defines the broad notion of an object as anything that we can think or talk about. In a general sense it is any entity: the pyramids, gods, Socrates, Alpha Centauri, the number seven, a disbelief in predestination or the fear of cats. In a strict sense it refers to any definite being. A related notion is objecthood. Objecthood is the state of being an object. One approac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modal Logic
Modal logic is a collection of formal systems developed to represent statements about necessity and possibility. It plays a major role in philosophy of language, epistemology, metaphysics, and natural language semantics. Modal logics extend other systems by adding unary operators \Diamond and \Box, representing possibility and necessity respectively. For instance the modal formula \Diamond P can be read as "possibly P" while \Box P can be read as "necessarily P". Modal logics can be used to represent different phenomena depending on what kind of necessity and possibility is under consideration. When \Box is used to represent epistemic necessity, \Box P states that P is epistemically necessary, or in other words that it is known. When \Box is used to represent deontic necessity, \Box P states that P is a moral or legal obligation. In the standard relational semantics for modal logic, formulas are assigned truth values relative to a ''possible world''. A formula's truth value at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]