Freescale RS08
   HOME
*





Freescale RS08
RS08 is a family of 8-bit microcontrollers by NXP Semiconductors. Originally released by Freescale in 2006, the RS08 architecture is a reduced-resource version of the Freescale MC68HCS08 central processing unit (CPU), a member of the 6800 microprocessor family. It has been implemented in several microcontroller devices for embedded systems. Compared to its sibling HC08 and Freescale S08 parts, it has a much-simplified design. The 'R' in its part numbers suggests "Reduced"; Freescale itself describes the core as "ultra-low-end". Typical implementations include fewer on-board peripherals and memory resources, have smaller packages (the smallest is the QFN6 package, at 3mm x 3mm x 1mm), and are priced under US$1. Aims of the simplified design include greater efficiency, greater cost-effectiveness for small-memory-size parts, and smaller die size. The RS08 employs a von Neumann architecture with shared program and data bus; executing instructions from within data memory is possi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


8-bit
In computer architecture, 8-bit Integer (computer science), integers or other Data (computing), data units are those that are 8 bits wide (1 octet (computing), octet). Also, 8-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on processor register, registers or Bus (computing), data buses of that size. Memory addresses (and thus address buses) for 8-bit CPUs are generally larger than 8-bit, usually 16-bit. 8-bit microcomputers are microcomputers that use 8-bit microprocessors. The term '8-bit' is also applied to the character sets that could be used on computers with 8-bit bytes, the best known being various forms of extended ASCII, including the ISO/IEC 8859 series of national character sets especially ISO/IEC 8859-1, Latin 1 for English and Western European languages. The IBM System/360 introduced byte-addressable memory with 8-bit bytes, as opposed to bit-addressable or decimal digit-addressable or word-addressable memory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Addressing Mode
Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how the machine language instructions in that architecture identify the operand(s) of each instruction. An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere. In computer programming, addressing modes are primarily of interest to those who write in assembly languages and to compiler writers. For a related concept see orthogonal instruction set which deals with the ability of any instruction to use any addressing mode. Caveats Note that there is no generally accepted way of naming the various addressing modes. In particular, different authors and computer manufacturers may give different names to the same addressing mode, or the same na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Low-power Electronics
Low-power electronics are electronics, such as notebook processors, that have been designed to use less electric power than usual, often at some expense. In the case of notebook processors, this expense is processing power; notebook processors usually consume less power than their desktop counterparts, at the expense of lower processing power. History Watches The earliest attempts to reduce the amount of power required by an electronic device were related to the development of the wristwatch. Electronic watches require electricity as a power source, and some mechanical movements and hybrid electromechanical movements also require electricity. Usually, the electricity is provided by a replaceable battery. The first use of electrical power in watches was as a substitute for the mainspring, to remove the need for winding. The first electrically powered watch, the Hamilton Electric 500, was released in 1957 by the Hamilton Watch Company of Lancaster, Pennsylvania. The first quartz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Context Switch
In computing, a context switch is the process of storing the state of a process or thread, so that it can be restored and resume execution at a later point, and then restoring a different, previously saved, state. This allows multiple processes to share a single central processing unit (CPU), and is an essential feature of a multitasking operating system. The precise meaning of the phrase "context switch" varies. In a multitasking context, it refers to the process of storing the system state for one task, so that task can be paused and another task resumed. A context switch can also occur as the result of an interrupt, such as when a task needs to access disk storage, freeing up CPU time for other tasks. Some operating systems also require a context switch to move between user mode and kernel mode tasks. The process of context switching can have a negative impact on system performance. Cost Context switches are usually computationally intensive, and much of the design of opera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cooperative Multitasking
Cooperative multitasking, also known as non-preemptive multitasking, is a style of computer multitasking in which the operating system never initiates a context switch from a running process to another process. Instead, in order to run multiple applications concurrently, processes voluntarily yield control periodically or when idle or logically blocked. This type of multitasking is called ''cooperative'' because all programs must cooperate for the scheduling scheme to work. In this scheme, the process scheduler of an operating system is known as a cooperative scheduler whose role is limited to starting the processes and letting them return control back to it voluntarily. Usage Although it is rarely used as the primary scheduling mechanism in modern operating systems, it is widely used in memory-constrained embedded systems and also, in specific applications such as CICS or the JES2 subsystem. Cooperative multitasking was the primary scheduling scheme for 16-bit application ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interrupts
In digital computers, an interrupt (sometimes referred to as a trap) is a request for the processor to ''interrupt'' currently executing code (when permitted), so that the event can be processed in a timely manner. If the request is accepted, the processor will suspend its current activities, save its state, and execute a function called an ''interrupt handler'' (or an ''interrupt service routine'', ISR) to deal with the event. This interruption is often temporary, allowing the software to resume normal activities after the interrupt handler finishes, although the interrupt could instead indicate a fatal error. Interrupts are commonly used by hardware devices to indicate electronic or physical state changes that require time-sensitive attention. Interrupts are also commonly used to implement computer multitasking, especially in real-time computing. Systems that use interrupts in these ways are said to be interrupt-driven. Types Interrupt signals may be issued in response to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Status Register
A status register, flag register, or condition code register (CCR) is a collection of status Flag (computing), flag bits for a Central processing unit, processor. Examples of such registers include FLAGS register (computing), FLAGS register in the x86 architecture, flags in the program status word (PSW) register in the IBM System/360 architecture through z/Architecture, and the application program status register (APSR) in the ARM Cortex-A architecture. The status register is a hardware register that contains information about the state of the Central processing unit, processor. Individual bits are implicitly or explicitly read and/or written by the machine code instructions executing on the processor. The status register lets an instruction take action contingent on the outcome of a previous instruction. Typically, flags in the status register are modified as effects of arithmetic and bit manipulation operations. For example, a Z bit may be set if the result of the operation is ze ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Link Register
A link register (LR for short) is a register which holds the address to return to when a subroutine call completes. This is more efficient than the more traditional scheme of storing return addresses on a call stack, sometimes called a machine stack. The link register does not require the writes and reads of the memory containing the stack which can save a considerable percentage of execution time with repeated calls of small subroutines. The IBM POWER architecture, and its PowerPC and Power ISA successors, have a special-purpose link register, into which subroutine call instructions put the return address. In some other instruction sets, such as the ARM architectures, SPARC, and OpenRISC, subroutine call instructions put the return address into a specific general-purpose register, so that register is designated by the instruction set architecture as the link register. In some others, such as PA-RISC, RISC-V, and the IBM System/360 and its successors, including z/Architecture, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Return Address (computing)
In computer programming, a return statement causes execution to leave the current subroutine and resume at the point in the code immediately after the instruction which called the subroutine, known as its return address. The return address is saved by the calling routine, today usually on the process's call stack or in a register. Return statements in many programming languages allow a function to specify a return value to be passed back to the code that called the function. Overview In C and C++, return ''exp''; (where ''exp'' is an expression) is a statement that tells a function to return execution of the program to the calling function, and report the value of ''exp''. If a function has the return type void, the return statement can be used without a value, in which case the program just breaks out of the current function and returns to the calling one. In Pascal there is no return statement. (However, in newer Pascals, the Exit(''exp''); can be used to return a value imm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subroutine
In computer programming, a function or subroutine is a sequence of program instructions that performs a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed. Functions may be defined within programs, or separately in libraries that can be used by many programs. In different programming languages, a function may be called a routine, subprogram, subroutine, method, or procedure. Technically, these terms all have different definitions, and the nomenclature varies from language to language. The generic umbrella term ''callable unit'' is sometimes used. A function is often coded so that it can be started several times and from several places during one execution of the program, including from other functions, and then branch back (''return'') to the next instruction after the ''call'', once the function's task is done. The idea of a subroutine was initially conceived by John Mauchly during his work on ENIAC, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Call Stack
In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to just "the stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks. A call stack is used for several related purposes, but the main reason for having one is to keep track of the point to which each active subroutine should return control when it finishes executing. An active subroutine is one that has been called, but is yet to complete execution, after which control should be handed back to the point of call. Such activations of subroutines may be nested to any level (recursive as a speci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flash Memory
Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use the same cell design, consisting of floating gate MOSFETs. They differ at the circuit level depending on whether the state of the bit line or word lines is pulled high or low: in NAND flash, the relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate. Flash memory, a type of floating-gate memory, was invented at Toshiba in 1980 and is based on EEPROM technology. Toshiba began marketing flash memory in 1987. EPROMs had to be erased completely before they could be rewritten. NAND flash memory, however, may be erased, written, and read in blocks (or pages), which generally are much smaller than the entire device. NOR flash memory allows a single machine word to be written to an era ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]