Fredkin Gate
   HOME
*



picture info

Fredkin Gate
The Fredkin gate (also CSWAP gate and conservative logic gate) is a computational circuit suitable for reversible computing, invented by Edward Fredkin. It is ''universal'', which means that any logical or arithmetic operation can be constructed entirely of Fredkin gates. The Fredkin gate is a circuit or device with three inputs and three outputs that transmits the first bit unchanged and swaps the last two bits if, and only if, the first bit is 1. Definition The basic Fredkin gate is a controlled swap gate that maps three inputs onto three outputs . The ''C'' input is mapped directly to the ''C'' output. If ''C'' = 0, no swap is performed; maps to , and maps to . Otherwise, the two outputs are swapped so that maps to , and maps to . It is easy to see that this circuit is reversible, i.e., "undoes" itself when run backwards. A generalized ''n''×''n'' Fredkin gate passes its first ''n''−2 inputs unchanged to the corresponding outputs, and swaps its last two outputs i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reversible Computing
Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one. Reversible computing is a form of unconventional computing. Due to the unitarity of quantum mechanics, quantum circuits are reversible, as long as they do not "collapse" the quantum states they operate on. Reversibility There are two major, closely related types of reversibility that are of particular interest for this purpose: physical reversibility and logical reversibility. A process is said to be ''physically reversible'' if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting this property that is referred to as charge recovery logic, adiabatic circui ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of Queensland
, mottoeng = By means of knowledge and hard work , established = , endowment = A$224.3 million , budget = A$2.1 billion , type = Public research university , chancellor = Peter Varghese , vice_chancellor = Deborah Terry , city = Brisbane, Queensland, Australia , students = 55,305 (2019) , undergrad = 35,051 (2019) , postgrad = 19,939 (2019) , faculty = 2,854 , campus = Multiple sites , colours = Purple , affiliations = Group of EightUniversitas 21 ASAIHL EdX , website = , logo = Logo of the University of Queensland.svg , coor = The University of Queensland (UQ, or Queensland University) is a public research university located primarily in Brisbane, the capital city of the Australian state of Queensland. Founded in 1909 by the Queensland parliament, UQ is one of the six sandstone universities, an informal designation of the oldest university in each state. As per 2023, The University of Queensland is ranked as 2nd in Australia and 42nd in the world. Al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic Gates
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see Ideal and real op-amps for comparison). Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. Now, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Journal Of Theoretical Physics
The ''International Journal of Theoretical Physics'' is a peer-reviewed scientific journal of physics published by Springer Science+Business Media since 1968. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 1.708 and publishes both original research and review articles. The editor-in-chief is Heinrich Saller (Max Planck Institute for Physics). Scope and indexing The journal covers the following areas: general relativity, quantum theory with relativistic quantum field theory, quantum measurement theory, quantum geometry and quantum logic. Services abstracting and indexing this journal include Chemical Abstracts Service, Mathematical Reviews, Science Citation Index, Scopus, and Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastructur . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toffoli Gate
In logic circuits, the Toffoli gate (also CCNOT gate), invented by Tommaso Toffoli, is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates. It is also known as the "controlled-controlled-not" gate, which describes its action. It has 3-bit inputs and outputs; if the first two bits are both set to 1, it inverts the third bit, otherwise all bits stay the same. Background An input-consuming logic gate ''L'' is reversible if it meets the following conditions: ''L''(''x'') = ''y'' is a gate where for any output ''y'', there is a unique input ''x''. The gate ''L'' is reversible if there is a gate ''L''′(''y'') = ''x'' which maps ''y'' to ''x''. From common logic gates, NOT is reversible, as can be seen from its truth table below. The common AND gate is not reversible, because the inputs 00, 01 and 10 are all mapped to the output 0. Reversible gates have been studied since the 1960s. The original motivati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Programming
Quantum programming is the process of assembling sequences of instructions, called quantum circuits, that are capable of running on a quantum computer. Quantum programming languages help express quantum algorithms using high-level constructs. The field is deeply rooted in the open-source philosophy and as a result most of the quantum software discussed in this article is freely available as open-source software. Quantum instruction sets Quantum instruction sets are used to turn higher level algorithms into physical instructions that can be executed on quantum processors. Sometimes these instructions are specific to a given hardware platform, e.g. ion traps or superconducting qubits. cQASM cQASM, also known as common QASM, is a hardware-agnostic quantum assembly language which guarantees the interoperability between all the quantum compilation and simulation tools. It was introduced by the QCA Lab at TUDelft. Quil Quil is an instruction set architecture for quantum com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Circuit
In quantum information theory, a quantum circuit is a model for quantum computation, similar to classical circuits, in which a computation is a sequence of quantum gates, measurements, initializations of qubits to known values, and possibly other actions. The minimum set of actions that a circuit needs to be able to perform on the qubits to enable quantum computation is known as DiVincenzo's criteria. Circuits are written such that the horizontal axis is time, starting at the left hand side and ending at the right. Horizontal lines are qubits, doubled lines represent classical bits. The items that are connected by these lines are operations performed on the qubits, such as measurements or gates. These lines define the sequence of events, and are usually not physical cables. The graphical depiction of quantum circuit elements is described using a variant of the Penrose graphical notation. Richard Feynman used an early version of the quantum circuit notation in 1986. Reversible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Gate
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates. For example, the reversible Toffoli gate can implement all Boolean functions, often at the cost of having to use ancilla bits. The Toffoli gate has a direct quantum equivalent, showing that quantum circuits can perform all operations performed by classical circuits. Quantum gates are unitary operators, and are described as unitary matrices relative to some basis. Usually we use the ''computational basis'', which unless we compare it with something, just means that for a ''d''-level quantum system (such as a qubit, a quantum register ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computing
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers may be too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computer
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers may be too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknowledgments of his 1995 paper, Schumacher states that the term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, (or about ). The photon belongs to the class of bosons. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, Planck proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Eins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]