HOME
*





Frame Problem
In artificial intelligence, the frame problem describes an issue with using first-order logic (FOL) to express facts about a robot in the world. Representing the state of a robot with traditional FOL requires the use of many axioms that simply imply that things in the environment do not change arbitrarily. For example, Hayes describes a "block world" with rules about stacking blocks together. In a FOL system, additional axioms are required to make inferences about the environment (for example, that a block cannot change position unless it is physically moved). The frame problem is the problem of finding adequate collections of axioms for a viable description of a robot environment. John McCarthy (computer scientist), John McCarthy and Patrick J. Hayes defined this problem in their 1969 article, ''Some Philosophical Problems from the Standpoint of Artificial Intelligence''. In this paper, and many that came after, the formal mathematical problem was a starting point for more general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Intelligence
Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs. The ''Oxford English Dictionary'' of Oxford University Press defines artificial intelligence as: the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. AI applications include advanced web search engines (e.g., Google), recommendation systems (used by YouTube, Amazon and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Tesla), automated decision-making and competing at the highest level in strategic game systems (such as chess and Go). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fluent Calculus
The fluent calculus is a formalism for expressing dynamical domains in first-order logic. It is a variant of the situation calculus; the main difference is that situations are considered representations of states. A binary function symbol \circ is used to concatenate the terms that represent facts that hold in a situation. For example, that the box is on the table in the situation s is represented by the formula \exists t . s = on(box,table) \circ t. The frame problem is solved by asserting that the situation after the execution of an action is identical to the one before but for the conditions changed by the action. For example, the action of moving the box from the table to the floor is formalized as: : State(Do(move(box,table,floor), s)) \circ on(box,table) = State(s) \circ on(box,floor) This formula states that the state after the move is added the term on(box,floor) and removed the term on(box,table). Axioms specifying that \circ is commutative and non-idempotent are necessary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transition System
In theoretical computer science, a transition system is a concept used in the study of computation. It is used to describe the potential behavior of discrete systems. It consists of states and transitions between states, which may be labeled with labels chosen from a set; the same label may appear on more than one transition. If the label set is a singleton, the system is essentially unlabeled, and a simpler definition that omits the labels is possible. Transition systems coincide mathematically with abstract rewriting systems (as explained further in this article) and directed graphs. They differ from finite-state automata in several ways: * The set of states is not necessarily finite, or even countable. * The set of transitions is not necessarily finite, or even countable. * No "start" state or "final" states are given. Transition systems can be represented as directed graphs. Formal definition Formally, a transition system is a pair (S, \rightarrow) where S is a set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Action Description Language
In artificial intelligence, action description language (ADL) is an automated planning and scheduling system in particular for robots. It is considered an advancement of STRIPS. Edwin Pednault (a specialist in the field of data abstraction and modelling who has been an IBM Research Staff Member in the Data Abstraction Research Group since 1996) proposed this language in 1987. It is an example of an action language. Origins Pednault observed that the expressive power of STRIPS was susceptible to being improved by allowing the effects of an operator to be conditional. This is the main idea of ADL-A, which is basically the propositional fragment of the ADL proposed by Pednault, with ADL-B an extension of -A. In the -B extension, actions can be described with indirect effects by the introduction of a new kind of propositions: ”static laws". A third variation of ADL is ADL-C which is similar to -B, in the sense that its propositions can be classified into static and dynamic laws, but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hoare Logic
Hoare logic (also known as Floyd–Hoare logic or Hoare rules) is a formal system with a set of logical rules for reasoning rigorously about the correctness of computer programs. It was proposed in 1969 by the British computer scientist and logician Tony Hoare, and subsequently refined by Hoare and other researchers. The original ideas were seeded by the work of Robert W. Floyd, who had published a similar system for flowcharts. Hoare triple The central feature of Hoare logic is the Hoare triple. A triple describes how the execution of a piece of code changes the state of the computation. A Hoare triple is of the form : \ C \ where P and Q are '' assertions'' and C is a ''command''.Hoare originally wrote "P\Q" rather than "\C\". P is named the ''precondition'' and Q the ''postcondition'': when the precondition is met, executing the command establishes the postcondition. Assertions are formulae in predicate logic. Hoare logic provides axioms and inference rules for all the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separation Logic
In computer science, separation logic is an extension of Hoare logic, a way of reasoning about programs. It was developed by John C. Reynolds, Peter O'Hearn, Samin Ishtiaq and Hongseok Yang, drawing upon early work by Rod Burstall. The assertion language of separation logic is a special case of the logic of bunched implications (BI). A CACM review article by O'Hearn charts developments in the subject to early 2019. Overview Separation logic facilitates reasoning about: * programs that manipulate pointer data structures—including information hiding in the presence of pointers; * ''"transfer of ownership"'' (avoidance of semantic frame axioms); and * virtual separation (modular reasoning) between concurrent modules. Separation logic supports the developing field of research described by Peter O'Hearn and others as ''local reasoning'', whereby specifications and proofs of a program component mention only the portion of memory used by the component, and not the entire global sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Model Semantics
The concept of a stable model, or answer set, is used to define a declarative semantics for logic programs with negation as failure. This is one of several standard approaches to the meaning of negation in logic programming, along with program completion and the well-founded semantics. The stable model semantics is the basis of answer set programming. Motivation Research on the declarative semantics of negation in logic programming was motivated by the fact that the behavior of SLDNF resolution — the generalization of SLD resolution used by Prolog in the presence of negation in the bodies of rules — does not fully match the truth tables familiar from classical propositional logic. Consider, for instance, the program :p\ :r \leftarrow p,\ q :s \leftarrow p,\ \operatorname q. Given this program, the query will succeed, because the program includes as a fact; the query will fail, because it does not occur in the head of any of the rules. The query will fail also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Answer Set Programming
Answer set programming (ASP) is a form of declarative programming oriented towards difficult (primarily NP-hard) search problems. It is based on the stable model (answer set) semantics of logic programming. In ASP, search problems are reduced to computing stable models, and ''answer set solvers''—programs for generating stable models—are used to perform search. The computational process employed in the design of many answer set solvers is an enhancement of the DPLL algorithm and, in principle, it always terminates (unlike Prolog query evaluation, which may lead to an infinite loop). In a more general sense, ASP includes all applications of answer sets to knowledge representation and the use of Prolog-style query evaluation for solving problems arising in these applications. History An early example of answer set programming was the planning method proposed in 1997 by Dimopoulos, Nebel and Köhler. Their approach is based on the relationship between plans and stable model ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Drew McDermott
Drew McDermott (December 27, 1949 – May 26, 2022) was a professor of Computer Science at Yale University. He was known for his contributions in artificial intelligence and planning. Education Drew McDermott earned Bachelor of Science, B.S., Master of Science, M.S., and Doctor of Philosophy, Ph.D. degrees from the Massachusetts Institute of Technology (MIT). He became a tenured full professor at Yale in 1983. He served as Chair of the Department from 1991 to 1995. He retired in 2018. Research His research has been in the area of artificial intelligence, with side excursions into philosophy. His Ph.D. dissertation was in the area of automated planning. In that work, he coined the term "task network" to refer to hierarchies of abstract and concrete actions and policies. He did seminal work in Non-monotonic logic in the early 1980s, and was an advocate for the "logicist" methodology in AI, defined as formalizing knowledge and reasoning in terms of deduction and quasideduction. In 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Default Logic
Default logic is a non-monotonic logic proposed by Raymond Reiter to formalize reasoning with default assumptions. Default logic can express facts like “by default, something is true”; by contrast, standard logic can only express that something is true or that something is false. This is a problem because reasoning often involves facts that are true in the majority of cases but not always. A classical example is: “birds typically fly”. This rule can be expressed in standard logic either by “all birds fly”, which is inconsistent with the fact that penguins do not fly, or by “all birds that are not penguins and not ostriches and ... fly”, which requires all exceptions to the rule to be specified. Default logic aims at formalizing inference rules like this one without explicitly mentioning all their exceptions. Syntax of default logic A default theory is a pair \langle W, D \rangle. is a set of logical formulas, called ''the background theory'', that formalize the fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Raymond Reiter
Raymond Reiter (; June 12, 1939 – September 16, 2002) was a Canadian computer scientist and logician. He was one of the founders of the field of non-monotonic reasoning with his work on default logic, model-based diagnosis, closed world reasoning, and truth maintenance systems. He also contributed to the situation calculus. Awards and honors He was a Fellow of the Association for Computing Machinery (ACM), an AAAI Fellow, and a Fellow of the Royal Society of Canada. He won the IJCAI Award for Research Excellence in 1993. Publications * R. Reiter (1978). On closed world data bases. In H. Gallaire and J. Minker, editors, ''Logic and Data Bases'', pages 119–140. Plenum., New York. * R. Reiter (1980). A logic for default reasoning. ''Artificial Intelligence'', 13:81-132. * R. Reiter (1987). A theory of diagnosis from first principles. ''Artificial Intelligence'', 32:57-95. * R. Reiter (1991). The frame problem in the situation calculus: a simple solution (sometimes) and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gottfried Wilhelm Leibniz
Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mathematics. He wrote works on philosophy, theology, ethics, politics, law, history and philology. Leibniz also made major contributions to physics and technology, and anticipated notions that surfaced much later in probability theory, biology, medicine, geology, psychology, linguistics and computer science. In addition, he contributed to the field of library science: while serving as overseer of the Wolfenbüttel library in Germany, he devised a cataloging system that would have served as a guide for many of Europe's largest libraries. Leibniz's contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters and in unpublished manuscripts. He wrote in several languages, primarily in Latin, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]