Fragmentation Function
   HOME
*





Fragmentation Function
In a sufficiently hard interaction between particles, the cross section can be factorized into parton distribution functions (PDFs), the hard scattering part, and fragmentation functions. The fragmentation functions, as are the PDFs, are non-perturbative functions describing the production of a given observed final state. In a leading order picture, it can be interpreted as the probability that the observed final state originates from a given quark or gluon. See also *Proton structure function The structure function (also known as the proton structure function), like the fragmentation function, is a probability density function in physics. It is somewhat analogous to the structure factor in solid-state physics, and the form factor (quant ... References Functions related to probability distributions {{particle-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Section (physics)
In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation (e.g. a particle beam, sound wave, light, or an X-ray) intersects a localized phenomenon (e.g. a particle or density fluctuation). For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted ( sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process. In classical physics, this probability often converges to a deterministic proportion of excitation energy involved in the process, so that, for example, with light scattering off of a particle, the cross section specifies the amount of optical power scattere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorization
In mathematics, factorization (or factorisation, see American and British English spelling differences#-ise, -ize (-isation, -ization), English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several ''factors'', usually smaller or simpler objects of the same kind. For example, is a factorization of the integer , and is a factorization of the polynomial . Factorization is not usually considered meaningful within number systems possessing division ring, division, such as the real number, real or complex numbers, since any x can be trivially written as (xy)\times(1/y) whenever y is not zero. However, a meaningful factorization for a rational number or a rational function can be obtained by writing it in lowest terms and separately factoring its numerator and denominator. Factorization was first considered by Greek mathematics, ancient Greek mathematicians in the case of integers. They proved the fundamental theorem o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parton (particle Physics)
In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation (a parton shower) produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions. Model Parton showers are simulated extensively in Monte Carlo event generators, in order to calibrate and interpret (and thus understand) processes in collider experiments. As such, the name is also used to refer to algorithms that approximate or simulate the process. Motivation The parton model was proposed by Richard Feynman in 1969 as a way to analyze high-energy hadron collisions. Any hadron (for example, a proton) can be considered as a composition of a number of point-like constituents, termed "partons". The parton model was immediately applied to electron-proton deep inelastic scattering by Bjorken and Paschos. Component particles A hadron is composed of a number of point- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-perturbative
In mathematics and physics, a non-perturbative function or process is one that cannot be described by perturbation theory. An example is the function : f(x) = e^, which does not have a Taylor series at ''x'' = 0. Every coefficient of the Taylor expansion around ''x'' = 0 is exactly zero, but the function is non-zero if ''x'' ≠ 0. In physics, such functions arise for phenomena which are impossible to understand by perturbation theory, at any finite order. In quantum field theory, 't Hooft–Polyakov monopoles, domain walls, flux tubes, and instantons are examples. A concrete, physical example is given by the Schwinger effect, whereby a strong electric field may spontaneously decay into electron-positron pairs. For not too strong fields, the rate per unit volume of this process is given by, : \Gamma = \frac \mathrm^ which cannot be expanded in a Taylor series in the electric charge e, or the electric field strength E. Here m is the mass of an electron and we have used units ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as ''color confinement'', quarks are never found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons, or in quark–gluon plasmas. There is also the theoretical possibility of more exotic phases of quark matter. For this reason, much of what is known about quarks has been drawn from observations of hadrons. Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as ''fundamental forces'' (electro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind quarks together, forming hadrons such as protons and neutrons. Gluons are vector gauge bosons that mediate strong interactions of quarks in quantum chromodynamics (QCD). Gluons themselves carry the color charge of the strong interaction. This is unlike the photon, which mediates the electromagnetic interaction but lacks an electric charge. Gluons therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than quantum electrodynamics (QED). Properties The gluon is a vector boson, which means, like the photon, it has a spin of 1. While massive spin-1 particles have three polarization states, massless gauge bosons like the gluon have only two polarization states because gauge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proton Structure Function
The structure function (also known as the proton structure function), like the fragmentation function, is a probability density function in physics. It is somewhat analogous to the structure factor in solid-state physics, and the form factor (quantum field theory). The nucleon (proton and neutron) electromagnetic form factors describe the spatial distributions of electric charge and current inside the nucleon and thus are intimately related to its internal structure; these form factors are among the most basic observables of the nucleon. (Nucleons are the building blocks of almost all ordinary matter in the universe. The challenge of understanding the nucleon's structure and dynamics has occupied a central place in nuclear physics.) The structure functions are important in the study of deep inelastic scattering. A. De Roeck and R.S. Thorne (2011). "Structure functions", ''Progress in Particle and Nuclear Physics'' 66 (4) pp 727–781, The fundamental understanding of structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]