Formal Verification
   HOME
*





Formal Verification
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code. The verification of these systems is done by providing a formal proof on an abstract mathematical model of the system, the correspondence between the mathematical model and the nature of the system being otherwise known by construction. Examples of mathematical objects often used to model systems are: finite-state machines, labelled transition systems, Petri nets, vector addition systems, timed automata, hybrid automata, process algebra, formal semantics of programming languages such as operational semantics, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Software System
A software system is a system of intercommunicating components based on software forming part of a computer system (a combination of hardware and software). It "consists of a number of separate programs, configuration files, which are used to set up these programs, system documentation, which describes the structure of the system, and user documentation, which explains how to use the system". The term "software system" should be distinguished from the terms "computer program" and "software". The term computer program generally refers to a set of instructions (source, or object code) that perform a specific task. However, a software system generally refers to a more encompassing concept with many more components such as specification, test results, end-user documentation, maintenance records, etc.' The use of the term software system is at times related to the application of systems theory approaches in the context of software engineering. A software system consists of several ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Timed Automaton
In automata theory, a timed automaton is a finite automaton extended with a finite set of real-valued clocks. During a run of a timed automaton, clock values increase all with the same speed. Along the transitions of the automaton, clock values can be compared to integers. These comparisons form guards that may enable or disable transitions and by doing so constrain the possible behaviors of the automaton. Further, clocks can be reset. Timed automata are a sub-class of a type hybrid automata. Timed automata can be used to model and analyse the timing behavior of computer systems, e.g., real-time systems or networks. Methods for checking both safety and liveness properties have been developed and intensively studied over the last 20 years. It has been shown that the state reachability problem for timed automata is decidable,Rajeev Alur, David L. Dill. 199A Theory of Timed Automata In Theoretical Computer Science, vol. 126, 183–235, pp. 194–1955 which makes this an interesting su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Temporal Logic
In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic with modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc. It is a fragment of the more complex CTL*, which additionally allows branching time and quantifiers. Subsequently, LTL is sometimes called ''propositional temporal logic'', abbreviated ''PTL''. In terms of expressive power, linear temporal logic (LTL) is a fragment of first-order logic. LTL was first proposed for the formal verification of computer programs by Amir Pnueli in 1977. Syntax LTL is built up from a finite set of propositional variables ''AP'', the logical operators ¬ and ∨, and the temporal modal operators X (some literature uses O or N) and U. Formally, the set of LTL formulas over ''AP'' is inductively defined as follows: * if p ∈ ''AP'' then p is an LTL formula; * if Ï ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE