Ford Viscosity Cup
   HOME
*





Ford Viscosity Cup
The Ford viscosity cup is a simple gravity device that permits the timed flow of a known volume of liquid passing through an orifice located at the bottom. Under ideal conditions, this rate of flow would be proportional to the kinematic viscosity (expressed in stokes and centistokes) that is dependent upon the specific gravity of the draining liquid. However, the conditions in a simple flow cup are seldom ideal for making true measurements of viscosity. It is important when using a Ford Cup and when retesting liquids that the temperature of the cup and the liquid is maintained, as ambient temperature makes a significant difference to viscosity and thus flow rate. The original Ford Cup was based on Imperial (UK) measurement of the aperture. Many other types of flow cups are being used, depending on the industry or region. Din Cup 4 mm., standard DIN 53211 (cancelled) ISO Cup 2, 3, 4, 5, 6, 8 mm. standard ISO 2431 AFNOR Cup 2,5, 4, 6, 8 mm. standard NF T30-014 AST ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light. On Earth, gravity gives weight to physical objects, and the Moon's gravity is responsible for sublunar tides in the oceans (the corresponding antipodal tide is caused by the inertia of the Earth and Moon orbiting one another). Gravity also has many important biological functions, helping to guide the growth of plants through the process of gravitropism and influencing the circ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volume
Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The definition of length (cubed) is interrelated with volume. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. In ancient times, volume is measured using similar-shaped natural containers and later on, standardized containers. Some simple three-dimensional shapes can have its volume easily calculated using arithmetic formulas. Volumes of more complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. Zero-, one- and two-dimensional objects have no volume; in fourth and higher dimensions, an analogous concept to the normal vo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape. A liquid is made up of tiny vibrating particles of matter, such as atoms, held together by intermolecular bonds. Like a gas, a liquid is able to flow and take the shape of a container. Most liquids resist compression, although others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly constant density. A distinctive property of the liquid state is surface tension, leading to wetting phenomena. Water is by far the most common liquid on Earth. The density of a liquid is usually close to that of a solid, and much higher than that of a gas. Therefore, liquid and solid are both termed condensed matte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Volumetric Flow Rate
In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol (sometimes ). It contrasts with mass flow rate, which is the other main type of fluid flow rate. In most contexts a mention of ''rate of fluid flow'' is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as '' discharge''. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol , with units of m3/(m2·s), that is, m·s−1. The integration of a flux over an area gives the volumetric flow rate. The SI unit is cubic metres per second (m3/s). Another unit used is standard cubic centimetres per minute (SCCM). In US customary units and imperial units, volumetric flow rate is often expressed as cubic feet per second (ft3/s) or gallons per minute (either ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kinematics
Kinematics is a subfield of physics, developed in classical mechanics, that describes the Motion (physics), motion of points, Physical object, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics (physics), kinetics, not kinematics. For further details, see analytical dynamics. Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Specific Gravity
Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water (molecule), water at its densest (at ); for gases, the reference is air at room temperature (). The term "relative density" (often abbreviated r.d. or RD) is often preferred in scientific usage, whereas the term "specific gravity" is deprecation, deprecated. If a substance's relative density is less than 1 then it is less dense than the reference; if greater than 1 then it is denser than the reference. If the relative density is exactly 1 then the densities are equal; that is, equal volumes of the two substances have the same mass. If the reference material is water, then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float. A substance wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flow Cups
Flow cups are designed to accurately measure the viscosity of paints, inks, varnishes and similar products. The process of flow through an orifice can often be used as a relative measurement and classification of viscosity. This measured kinematic viscosity is generally expressed in seconds of flow time which can be converted into centistokes (cSt) using a viscosity calculator.Viscosity
. BYK-Gardner GmbH Flow cups are manufactured using high grade aluminium alloy with stainless steel orifices (where indicated), flow cups are available with a range of UKAS / ISO 17025 certified standard oils to confirm the flow cup is measuring within specification.


See also

*

picture info

Flow Measurement
Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below: * a) Obstruction type (differential pressure or variable area) * b) Inferential (turbine type) * c) Electromagnetic * d) Positive-displacement flowmeters, which accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow. * e) Fluid dynamic (vortex shedding) * f) Anemometer * g) Ultrasonic * h) Mass flowmeter ( Coriolis force). Flow measurement methods other than positive-displacement flowmeters rely on forces produced by the flowing stream as it overcomes a known constriction, to indirectly calculate flow. Flow may be measured by measuring the velocity of fluid over a known area. For very large flows, tracer methods may be used to deduce the flow rate from the change in concentration of a dye or radioisotope. Kinds and units of measurement Both gas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscometer
A viscometer (also called viscosimeter) is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a special type of viscometer. Viscometers only measure under one flow condition. In general, either the fluid remains stationary and an object moves through it, or the object is stationary and the fluid moves past it. The drag caused by relative motion of the fluid and a surface is a measure of the viscosity. The flow conditions must have a sufficiently small value of Reynolds number for there to be laminar flow. At 20°C, the dynamic viscosity (kinematic viscosity × density) of water is 1.0038 mPa·s and its kinematic viscosity (product of flow time × factor) is 1.0022mm2/s. These values are used for calibrating certain types of viscometers. Standard laboratory viscometers for liquids U-tube viscometers These devices are also known as gl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zahn Cup
A Zahn cup is a viscosity measurement device widely used in the paint industry. It is commonly a stainless steel cup with a tiny hole drilled in the centre of the bottom of the cup. There is also a long handle attached to the sides. There are five cup specifications, labelled Zahn cup #x, where x is the number from one through five (see table below). Large number cup sizes are used when viscosity is high, while low number cup sizes are used when viscosity is low. They are manufactured in accordance to ASTM D 4212, ASTM D1084 and ASTM D816 To determine the viscosity of a liquid, the cup is dipped and completely filled with the substance. After lifting the cup out of the substance the user measures the time until the liquid streaming out of it breaks up, this is the corresponding "efflux time". On paint standard specifications, one denotes viscosity in this manner: ''efflux time'', ''Zahn cup number''. Conversion One can convert efflux time to kinematic viscosity by using an eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]